Publications by authors named "Kunal N More"

The chemical modification of amino acids plays an important role in the modulation of proteins or peptides and has useful applications in the activation and stabilization of enzymes, chemical biology, shotgun proteomics, and the production of peptide-based drugs. Although chemoselective modification of amino acids such as lysine and arginine via the insertion of respective chemical moieties as citraconic anhydride and phenyl glyoxal is important for achieving desired application objectives and has been extensively reported, the extent and chemoselectivity of the chemical modification of specific amino acids using specific chemical agents (blocking or modifying agents) has yet to be sufficiently clarified owing to a lack of suitable assay methodologies. In this study, we examined the utility of a fluorogenic assay method, based on a fluorogenic tripeptide substrate (FP-AA1-AA2-AA3) and the proteolytic enzyme trypsin, in determinations of the extent and chemoselectivity of the chemical modification of lysine or arginine.

View Article and Find Full Text PDF

The selectivity of a drug toward various isoforms of the target protein family is important in terms of toxicology. Typically, drug or candidate selectivity is assessed by in vitro assays, but in vivo investigations are currently lacking. Positron emission tomography (PET) allows the non-invasive determination of the in vivo distribution of a radiolabeled drug, which can provide in vivo data regarding drug selectivity.

View Article and Find Full Text PDF

Xanthene fluorophores, including fluorescein, rhodol, and rhodamines, are representative classes of fluorescent probes that have been applied in the detection and visualization of biomolecules. "Turn on" activatable fluorescent probes, that can be turned on in response to enzymatic reactions, have been developed and prepared to reduce the high background signal of "always-on" fluorescent probes. However, the development of activity-based fluorescent probes for biological applications, using simple xanthene dyes, is hampered by their inefficient synthetic methods and the difficulty of chemical modifications.

View Article and Find Full Text PDF

Heat-shock protein 90 (HSP90) is a molecular chaperone that activates oncogenic transformation in several solid tumors, including lung and breast cancers. Ganetespib, a most promising candidate among several HSP90 inhibitors under clinical trials, has entered Phase III clinical trials for cancer therapy. Despite numerous evidences validating HSP90 as a target of anticancer, there are few studies on PET agents targeting oncogenic HSP90.

View Article and Find Full Text PDF

Meridianin C is a marine natural product known for its anti-cancer activity. At present, the anti-tumour effects of meridianin C on oral squamous cell carcinoma are unknown. Here, we investigated the effect of meridianin C on the proliferation of four different human tongue cancer cells, YD-8, YD-10B, YD-38 and HSC-3.

View Article and Find Full Text PDF

Pim kinases are promising therapeutic targets for the treatment of hematological cancers. A potent Pim kinase inhibitor 7f, derived from meridianin C, was further optimized by the replacement of 2-aminopyrimidine with substituted benzene. The optimization of the C-3 and C-5 positions of indole yielded compound 43 with improved cellular potency and high selectivity against a panel of 14 different kinases.

View Article and Find Full Text PDF

Carbonic anhydrase IX is overexpressed in many solid tumors including hypoxic tumors and is a potential target for cancer therapy and diagnosis. Reported imaging agents targeting CA-IX are successful mostly in clear cell renal carcinoma as SKRC-52 and no candidate was approved yet in clinical trials for imaging of CA-IX. To validate CA-IX as a valid target for imaging of hypoxic tumor, we designed and synthesized novel [F]-PET tracer (1) based on acetazolamide which is one of the well-known CA-IX inhibitors and performed imaging study in CA-IX expressing hypoxic tumor model as 4T1 and HT-29 in vivo models other than SKRC-52.

View Article and Find Full Text PDF

A novel series of meridianin C derivatives substituted at C-5 position were prepared. These derivatives were tested for their kinase inhibitory potencies against all three family members of the pim kinases (Pim-1, Pim-2 and Pim-3). In addition, their antiproliferative activity towards three human leukemia cell lines as MV4-11, Jurkat clone E6-1 and K562 has been evaluated.

View Article and Find Full Text PDF