Publications by authors named "Kunal Balu Sukhija"

Mechanical stretch induces phosphorylation of the hydrophobic motif site Thr(389) in p70(S6k) through a rapamycin-sensitive (RS) pathway that involves a unique PI3K-independent mechanism. Rapamycin is considered to be a highly specific inhibitor of the protein kinase mTOR; however, mTOR is also considered to be a PI3K-dependent signaling molecule. Thus, questions remain as to whether mTOR is the RS element that confers mechanically-induced signaling to p70(S6k)(389).

View Article and Find Full Text PDF

Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and the quality of life. Although a link between mechanical stimuli and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process have not been defined. Nevertheless, significant advancements are being made in this field, and it has recently been established that signaling through a rapamycin-sensitive pathway is necessary for mechanically induced growth of skeletal muscle.

View Article and Find Full Text PDF