Publications by authors named "Kun-Xi Qian"

Our TransApical to Aorta pump, a simple and minimally invasive left ventricular (LV) assist device, has a flexible, thin-wall conduit connected by six struts to a motor with ball bearings and a turbine extending into the blood path. Pulsatile flow is inherent in the design as the native heart contraction preloads the turbine. In six healthy sheep, the LV apex was exposed by a fifth intercostal left thoracotomy.

View Article and Find Full Text PDF

According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably.

View Article and Find Full Text PDF

Despite the progresses in developing pulsatile impeller pump and impeller total heart, as well as in applying streamlined impeller vanes, the best results in application of artificial heart pumps have been achieved by nonpulsatile univentricular assist pump with straight impeller vanes until now. It seems all efforts and successes have been done in vain because artificial heart rejects Hi-Tech! This paper recalls some important achievements in R&D of artificial heart in past 25 years and shares author's experiences with the readers.

View Article and Find Full Text PDF

In spite of continuous improvements in device design and applications, the profound use of heart pump has been limited because of its high price. The available clinically applied heart pump costs mostly about 100 thousands US Dollars. The author has since long tried to develop a heart pump costing only 1000 Dollars for recovery or bridge to heart transplantation therapies.

View Article and Find Full Text PDF

The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.

View Article and Find Full Text PDF

To investigate the possibility of a long-term applicable left ventricular assist device, a 23 mm outer diameter and 31 g weight implantable aortic valvo-pump was developed. It consists of a rotor and a stator; the rotor has a driven magnets assemble and an impeller, the stator has a motor coil with iron core and a outflow guide vane. The device locates the position of aortic valve, delivers the blood directly from left ventricle to aorta.

View Article and Find Full Text PDF

To provide better anatomical fit and physiologic adaptation, three aortic valvo-pumps with different dimensions were developed. Each pump has a rotor with an impeller and drive magnets and a stator consisting of a motor coil with iron core and an outflow guide vane. The devices had outer diameters of 21 mm, 23 mm, and 25 mm, respectively, and weighted 27 g, 31 g, and 40 g, respectively.

View Article and Find Full Text PDF

Since 1995, four different types of artificial heart pumps and artificial valvo-pumps have been developed in Jiangsu University of China. Three types of heart pumps and valvo-pumps have been applied in animal experiments in University Texas, Medical Branch, USA and in Zhenjiang No.1 People's Hospital of China.

View Article and Find Full Text PDF