Publications by authors named "Kun-Woo Nam"

Gallium-based liquid metals remain in a liquid state at room temperature and exhibit excellent electrical and thermal conductivities, low viscosity, and low toxicity, making them ideal for creating highly stretchable and conductive composites suitable for flexible electronic devices. Despite these benefits, conventional single-layer liquid metal composites face challenges, such as liquid metal leakage during deformation (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • EEG captures brain signals but faces challenges from external noise and artifacts.
  • Wet electrodes are typically used for better quality, but there's a push to develop effective dry electrodes.
  • This study presents flexible dry electrodes made from PDMS/CNT composites with a unique surface design that improves adhesion and performance, potentially outperforming traditional wet electrodes.
View Article and Find Full Text PDF

Polymers mixed with conductive fillers hold significant potential for use in stretchable and wearable sensor devices. Enhancing the piezoresistive effect and mechanical stability is critical for these devices. To explore the changes in the electrical resistance under high strains, typically unachievable in single-layer composites, bi-layer structures were fabricated from carbon nanotubes (CNTs) and EcoFlex composites to see unobservable strain regions.

View Article and Find Full Text PDF

Compression and tension sensors with a porous structure have attracted attention recently. Porous sponge sensors have the advantage of a wide deformation range owing to their structural characteristics. In this study, a porous sponge structure was prepared by absorbing polydimethylsiloxane (PDMS) into the matrix of porous commercial sugar cubes.

View Article and Find Full Text PDF