Cultivated strawberry (Fragaria × ananassa) is a popular, economically important fruit. The ripening of the receptacle (pseudocarp), the main edible part, depends on endogenously produced abscisic acid (ABA) and is suppressed by the high level of auxin produced from achenes (true fruit) during early development. However, the mechanism whereby auxin regulates receptacle ripening through inhibiting ABA biosynthesis remains unclear.
View Article and Find Full Text PDFAuxin response transcription factors (ARFs) form a large gene family, many of whose members operate at the final step of the auxin signaling pathway. ARFs participate directly in many aspects of plant growth and development. Here we summarize recent advances in understanding the roles of ARFs in regulating aspects of fleshy fruit development and ripening.
View Article and Find Full Text PDFExcessive softening during fleshy fruit ripening leads to physical damage and infection that reduce quality and cause massive supply chain losses. Changes in cell wall (CW) metabolism, involving loosening and disassembly of the constituent macromolecules, are the main cause of softening. Several genes encoding CW metabolizing enzymes have been targeted for genetic modification to attenuate softening.
View Article and Find Full Text PDFAs a canonical non-climacteric fruit, strawberry ( spp.) ripening is mainly mediated by abscisic acid (ABA), which involves multiple other phytohormone signalings. Many details of these complex associations are not well understood.
View Article and Find Full Text PDFFleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change.
View Article and Find Full Text PDFHeat stress is a major abiotic stress for plants, which can generate a range of biochemical and genetic responses. In 'Ponkan' mandarin fruit, hot air treatment (HAT) accelerates the degradation of citric acid. However, the transcriptional regulatory mechanisms of citrate degradation in response to HAT remain to be elucidated.
View Article and Find Full Text PDFCitrate is one of the most important metabolites determining the flavour of citrus fruit. It has been reported that nitrogen supply may have an impact on acid level of fruit. Here, the relationship between nitrogen metabolism and citrate catabolism was studied in pumelo juice sacs.
View Article and Find Full Text PDFLoquat fruit accumulates lignin in its flesh when undergoing chilling injury during postharvest storage, making it a suitable model for the study of flesh lignification. Transcriptional regulation of lignin biosynthesis is principally controlled by the NAC-MYB transcriptional cascade in model plants. Previous research has demonstrated that EjMYB8 activates lignin biosynthesis through direct interaction with the promoter of .
View Article and Find Full Text PDFCitric acid is the most abundant organic acid in citrus fruit, and the acetyl-CoA pathway potentially plays an important role in citric acid degradation, which occurs during fruit ripening. Analysis of transcripts during fruit development of key genes in the acetyl-CoA pathway and transient overexpression assay in citrus leaves indicated that could be a potential target gene involved in citrate degradation. In order to understand more about , 23 transcription factors coexpressed with in citrus fruit were identified by RNA-seq.
View Article and Find Full Text PDFFlesh lignification is a specific chilling response that causes deterioration in the quality of stored red-fleshed loquat fruit (Eribotrya japonica) and is one aspect of wider chilling injury. APETALA2/ETHLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors are important regulators of plant low-temperature responses and lignin biosynthesis. In this study, the expression and action of 27 AP2/ERF genes from the red-fleshed loquat cultivar 'Luoyangqing' were investigated in order to identify transcription factors regulating low-temperature-induced lignification.
View Article and Find Full Text PDFMost persimmon (Diospyros kaki) cultivars are astringent and require post-harvest deastringency treatments such as 95% CO2 (high-CO2 treatment) to make them acceptable to consumers. High-CO2 treatment can, however, also induce excessive softening, which can be reduced by adding 1-methylcyclopropene (1-MCP). Previous studies have shown that genes encoding the ETHYLENE RESPONSE FACTORS (ERFs) DkERF8/16/19 can trans-activate xyloglucan endotransglycosylase/hydrolase (DkXTH9), which encodes the cell wall-degrading enzyme associated with persimmon fruit softening.
View Article and Find Full Text PDFAnthocyanin biosynthesis is induced by low temperatures in a number of plants. However, in peach (cv Zhonghuashoutao), anthocyanin accumulation was observed in fruit stored at 16°C but not at or below 12°C. Fruit stored at 16°C showed elevated transcript levels of genes encoding anthocyanin biosynthetic enzymes, the transport protein glutathione S-transferase and key transcription factors.
View Article and Find Full Text PDFPersimmon () is an oriental perennial woody fruit tree whose popular fruit is produced and consumed worldwide. The persimmon fruit is unique because of the hyperaccumulation of proanthocyanidins during fruit development, causing the mature fruit of most cultivars to have an astringent taste. In this study, we obtained a chromosome-scale genome assembly for 'Youshi' (, 2n = 2x = 30), the diploid species of persimmon, by integrating Illumina sequencing, single-molecule real-time sequencing, and high-throughput chromosome conformation capture techniques.
View Article and Find Full Text PDFCitrus fruit postharvest degreening is a critical stage in marketing, carried out by exposure to ethylene or ethephon. Genome-wide screening of the AP2/ERF superfamily indicated that a novel ERF-II (CitERF6) was shown to trans-activate the CitPPH promoter. Expression of CitERF6 is associated with both developmental and postharvest degreening in citrus fruit.
View Article and Find Full Text PDFMany transcription factors (TFs), including NACs and MYBs, are involved in regulation of lignin biosynthesis during plant development and in responses to biotic and abiotic stresses. The lignin biosynthesis gene Ej4CL1 has been identified as a target for cold-induced TFs. We isolated a bHLH gene from loquat, EjbHLH1, the expression of which was negatively correlated with cold-induced fruit lignification.
View Article and Find Full Text PDFTexture attributes such as firmness and lignification are important for fruit quality. Lignification has been widely studied in model plants and energy crops, but fruit lignification has rarely been investigated, despite having an adverse effect on fruit quality and consumer preference. Chilling-induced loquat fruit lignification that occurs after harvest can be alleviated by heat treatment (HT) applied prior to low temperature storage.
View Article and Find Full Text PDFIdentification and functional characterization of hypoxia-responsive transcription factors is important for understanding plant responses to natural anaerobic environments and during storage and transport of fresh horticultural products. In this study, yeast one-hybrid library screening using the persimmon () pyruvate decarboxylase () promoter identified three ethylene response factor (ERF) genes (//) and four WRKY transcription factor genes (//) that were differentially expressed in response to high CO (95%, with 4% N and 1% oxygen) and high N (99% N and 1% oxygen). Yeast one-hybrid assays and electrophoretic mobility shift assays indicated that DkERF23, DkERF24, DkERF25, DkWRKY6, and DkWRKY7 could directly bind to the promoter.
View Article and Find Full Text PDFRipening, including softening, is a critical factor in determining the postharvest shelf-life of fruit and is controlled by enzymes involved in cell wall metabolism, starch degradation, and hormone metabolism. Here, we used a transcriptomics-based approach to identify transcriptional regulatory components associated with texture, ethylene, and starch degradation in ripening kiwifruit (). Twelve differentially expressed structural genes, including seven involved in cell wall metabolism, four in ethylene biosynthesis, and one in starch degradation, and 14 transcription factors (TFs) induced by exogenous ethylene treatment and inhibited by the ethylene signaling inhibitor 1-methylcyclopropene were identified as changing in transcript levels during ripening.
View Article and Find Full Text PDFArtificial high-CO2 atmosphere (AHCA, 95% CO2 and 1% O2) has been widely applied as a postharvest de-astringency treatment for persimmon fruit. AHCA increases expression of transcription factors, including ethylene response factors (DkERF), that target de-astringency genes. Here, the promoter of DkERF9, a previously characterized AHCA-inducible and de-astringency regulator, was utilized to screen a cDNA library by yeast one hybrid assay.
View Article and Find Full Text PDFPlant responses to anaerobic environments are regulated by ethylene-response factors (ERFs) in both vegetative and productive organs, but the roles of other transcription factors (TFs) in hypoxia responses are poorly understood. In this study, eight TFs (DkbHLH1, DkMYB9/10/11, DkRH2-1, DkGT3-1, DkAN1-1, DkHSF1) were shown to be strongly up-regulated by an artificial high-CO2 atmosphere (1% O2 and 95% CO2). Dual-luciferase assays indicated that some TFs were activators of previously characterized DkERFs, including DkMYB10 for the DkERF9 promoter, DkERF18/19 and DkMYB6 for the DkERF19 promoter, and DkERF21/22 for the DkERF10 promoter.
View Article and Find Full Text PDFBlue light photoreceptors, cryptochromes (CRYs), regulate multiple aspects of plant growth and development. However, our knowledge of CRYs is predominantly based on model plant Arabidopsis at early growth stage. In this study, we elucidated functions of CRY1a gene in mature tomato (Solanum lycopersicum) plants by using cry1a mutants and CRY1a-overexpressing lines (OE-CRY1a-1 and OE-CRY1a-2).
View Article and Find Full Text PDFLignin is an important component of many plant secondary cell walls. In the fruit of loquat (Eriobotrya japonica), lignification of cell walls in the fleshy tissue occurs when fruit are subjected to low-temperature storage, which is commonly used to avoid the rapid senescence that occurs at room temperature. In this study, two NAC domain genes, EjNAC3 and EjNAC4, were isolated and shown to be significantly induced at 0 °C, which was concomitant with an increase in the fruit lignification index.
View Article and Find Full Text PDFComposition and changes in free volatiles have been extensively studied in citrus fruit such as mandarin. However, components of glycosidically bound volatiles and changes during fruit ripening have been rarely investigated. A total of 56 glycosidically-bound volatiles were identified in fruit peel at four ripening stages.
View Article and Find Full Text PDFCitric acid is the predominant organic acid of citrus fruit. Degradation of citric acid occurs during fruit development, influencing fruit acidity. Associations of CitAco3 transcripts and citric acid degradation have been reported for citrus fruit.
View Article and Find Full Text PDF