Publications by authors named "Kun-Qiang Hong"

Soy sauce, as a traditional seasoning, is widely favoured by Chinese and other Asian people for its unique colour, smell, and taste. In this study, a salt-tolerance strain HF-130 was obtained via three rounds of ARTP (Atmospheric and Room Temperature Plasma) mutagenesis and high-salt based screening. The ethanol production of mutant HF-130 was increased by 98.

View Article and Find Full Text PDF

Background: In vivo biosensors have a wide range of applications, ranging from the detection of metabolites to the regulation of metabolic networks, providing versatile tools for synthetic biology and metabolic engineering. However, in view of the vast array of metabolite molecules, the existing number and performance of biosensors is far from sufficient, limiting their potential applications in metabolic engineering. Therefore, we developed the synthetic glycine-ON and -OFF riboswitches for metabolic regulation and directed evolution of enzyme in Escherichia coli.

View Article and Find Full Text PDF

Uncoordinated carbon-nitrogen ratio in raw materials will lead to excessive contents of higher alcohols in alcoholic beverages. The effect of gene, the GATA transcription activator, on higher alcohol biosynthesis was investigated to clarify the mechanism of regulating higher alcohol metabolism under high concentrations of free amino nitrogen (FAN). The availability of FAN by strain SDT1K with a double-copy deletion was 28.

View Article and Find Full Text PDF

1-Deoxynojirimycin (1-DNJ), a polyhydroxylated alkaloid, is a highly selective and potent glycosidase inhibitor that has garnered great interest as a tool to study cellular recognition and as a potential therapeutic agent. The development of analytical methods for the quantification polyhydroxylated alkaloids in natural products requires a multifaceted approach. Many publications over the past five decades have described analytical methods for this compound.

View Article and Find Full Text PDF

Background: Enhancing the industrial yeast strains ethyl acetate yield through a precise and seamless genetic manipulation strategy without any extraneous DNA sequences is an essential requisite and significant demand.

Objectives: For increasing the ethyl acetate yield of industrial brewer's yeast strain, all the alleles were overexpressed through "self-cloning" integration strategy.

Material And Methods: strain DH5α was utilized for plasmid construction.

View Article and Find Full Text PDF

Undesirable flavor caused by excessive higher alcohols restrains the development of the wheat beer industry. To clarify the regulation mechanism of the metabolism of higher alcohols in wheat beer brewing by the top-fermenting yeast Saccharomyces cerevisiae S17, the effect of temperature on the fermentation performance and transcriptional levels of relevant genes was investigated. The strain S17 produced 297.

View Article and Find Full Text PDF

Flavor production by esters or by higher alcohols play a key role in the sensorial quality of fermented alcoholic beverages. In Saccharomyces cerevisiae cells, the syntheses of esters and higher alcohols are considerably influenced by intracellular CoA levels catalyzed by pantothenate kinase. In this work, we examined the effects of cofactor CoA and acetyl-CoA synthesis on the metabolism of esters and higher alcohols.

View Article and Find Full Text PDF

Genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used in various host cells. Its widespread adoption has been largely developed by the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR) system, which uses an easily customizable specificity RNA-guided DNA endonuclease, such as Cas9. Recently, CRISPR/Cas9 mediated genome engineering has been widely applied to model organisms, including Bacillus subtilis, enabling facile, rapid high-fidelity modification of endogenous native genes.

View Article and Find Full Text PDF

As content and proportion of ethyl acetate is critical to the flavor and quality of beverages, the concise regulation of the ethyl acetate metabolism is a major issue in beverage fermentations. In this study, for ethyl acetate yield regulation, we finely modulated the expression of ATF1 through precise and seamless insertion of serially truncated PGK1 promoter from the 3' end by 100bp steps in the Chinese liquor yeast, CLy12a. The three engineered promoters carrying 100-, 200-, and 300-bp truncations exhibited reduced promoter strength but unaffected growth.

View Article and Find Full Text PDF