Introduction: Percutaneous microwave ablation (MWA) is clinically accepted for the treatment of lung tumors and oligometastatic disease. Bronchoscopic MWA is under development and evaluation in the clinical setting. We previously reported on the development of a bronchoscopy-guided MWA system integrated with clinical virtual bronchoscopy and navigation and demonstrated the feasibility of transbronchial MWA, using a maximum power of 60 W at the catheter input.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
June 2022
Purpose: Functional lung avoidance (FLA) radiation therapy (RT) aims to minimize post-RT pulmonary toxicity by preferentially avoiding dose to high-functioning lung (HFL) regions. A common limitation is that FLA approaches do not consider the conducting architecture for gas exchange. We previously proposed the functionally weighted airway sparing (FWAS) method to spare airways connected to HFL regions, showing that it is possible to substantially reduce risk of radiation-induced airway injury.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2021
In previous works, we showed that incorporating individual airways as organs-at-risk (OARs) in the treatment of lung stereotactic ablative radiotherapy (SAbR) patients potentially mitigates post-SAbR radiation injury. However, the performance of common clinical dose calculation algorithms in airways has not been thoroughly studied. Airways are of particular concern because their small size and the density differences they create have the potential to hinder dose calculation accuracy.
View Article and Find Full Text PDFBackground: Percutaneous microwave ablation is clinically used for inoperable lung tumour treatment. Delivery of microwave ablation applicators to tumour sites within lung parenchyma under virtual bronchoscopy guidance may enable ablation with reduced risk of pneumothorax, providing a minimally invasive treatment of early-stage tumours, which are increasingly detected with computed tomography (CT) screening. The objective of this study was to integrate a custom microwave ablation platform, incorporating a flexible applicator, with a clinically established virtual bronchoscopy guidance system, and to assess technical feasibility for safely creating localised thermal ablations in porcine lungs .
View Article and Find Full Text PDFRespiratory motion management techniques in radiotherapy (RT) planning are primarily focused on maintaining tumor target coverage. An inadequately addressed need is accounting for motion in dosimetric estimations in smaller serial structures. Accurate dose estimations in such structures are more sensitive to motion because respiration can cause them to move completely in or out of a high dose-gradient field.
View Article and Find Full Text PDFBronchoscopy is often performed for staging lung cancer. The recent development of multidetector computed tomography (MDCT) scanners and ultrathin bronchoscopes now enable the bronchoscopic biopsy and treatment of peripheral diagnostic regions of interest (ROIs). Because these ROIs are often located several generations within the airway tree, careful planning and interpretation of the bronchoscopic route is required prior to a procedure.
View Article and Find Full Text PDFBackground: Ultrathin bronchoscopy guided by virtual bronchoscopy (VB) techniques show promise for the diagnosis of peripheral lung lesions. In a phantom study, we evaluated a new real-time, VB-based, image-guided system for guiding the bronchoscopic biopsy of peripheral lung lesions and compared its performance to that of standard bronchoscopy practice.
Methods: Twelve bronchoscopists of varying experience levels participated in the study.
Bronchoscopic biopsy of the central-chest lymph nodes is an important step for lung-cancer staging. Before bronchoscopy, the physician first visually assesses a patient's three-dimensional (3D) computed tomography (CT) chest scan to identify suspect lymph-node sites. Next, during bronchoscopy, the physician guides the bronchoscope to each desired lymph-node site.
View Article and Find Full Text PDFComput Biol Med
December 2007
Modern micro-CT and multi-detector helical CT scanners can produce high-resolution 3D digital images of various anatomical trees. The large size and complexity of these trees make it essentially impossible to define them interactively. Automatic approaches have been proposed for a few specific problems, but none of these approaches guarantee extracting geometrically accurate multi-generational tree structures.
View Article and Find Full Text PDF