Carbon-based nanomaterials hold promise for eco-friendly alternatives to heavy-metal-containing quantum dots (QDs) in optoelectronic applications. Here, boric acid-functionalized graphene quantum dots (B-GQDs) were prepared using bottom-up molecular fusion based on nitrated pyrenes and boric acid. Such B-GQDs with crystalline graphitic structures and hydrogen-bonding functionalities would be suitable model systems for unraveling the photoluminescence (PL) mechanism, while serving as versatile building blocks for supramolecular self-assembly.
View Article and Find Full Text PDFSolar energy can be harvested using luminescent solar concentrators (LSCs) incorporated with edge-mounted solar cells without sacrificing their see-through visibility, thus facilitating the development of solar windows. Eco-friendly carbon dots (CDs) are promising alternatives to heavy-metal-containing quantum dots in LSC applications. Unfortunately, their solid-state quantum yield (QY) at high optical density (required by laminated LSCs) is still low (<30%) and the Stokes shift is only moderate (<100 nm).
View Article and Find Full Text PDFLuminescent and transparent composites formed by embedding luminophores in a solid matrix are essential components for several photonic applications, such as luminescent solar concentrators (LSCs) and luminescent down-shifting/conversion layers. For these applications, the optical losses, including reabsorption and scattering need to be minimized, while the photoluminescence (PL) emission must be stable against outdoor environments. Here, highly transparent and luminescent aluminosilicate glass doped with surface-engineered gold nanoclusters (AuNCs) was prepared without involving toxic elements and hazardous solvents.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2020
Visible-transparent luminescent solar concentrators (VT-LSCs) can be integrated with solar cells for designing solar glasses. Recently, rare-earth complexes, semiconductor nanocrystals, and carbon nanodots (CNDs) have been applied in developing VT-LSCs. However, several challenges still existed, such as quantum yields (QYs) at high-loading contents, scattering/reabsorption losses, and stability.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) have gained much attention as light-emitting materials for light-conversion nano-phosphors and luminescent solar concentrators. Unfortunately, those CQDs involve toxic heavy metals and frequently need to be synthesized in the hazardous organic solvent. In addition, they suffer from severe solid-state aggregation-induced self-quenching and reabsorption losses.
View Article and Find Full Text PDFA luminescent solar concentrator (LSC) is composed of loaded luminophores and a waveguide that can be employed to harvest and concentrate both direct and diffused sunlight for promising applications in solar windows. Thus far, most of efficient LSCs still relied on the heavy-metal-containing colloidal quantum dots (CQDs) dispersed into a polymer matrix with a very low loading (typically <1 wt %). Such low-loading constraint is required to mitigate the concentration-induced quenching (CIQ) and maintain high optical quality and film uniformity, but this would strongly reduce the light-absorbing efficiency.
View Article and Find Full Text PDF