Publications by authors named "Kun Qing"

Hyperpolarized gas (HPG) magnetic resonance (MR) imaging allows for the quantification of pulmonary defects with the ventilation defect percentage (VDP). Although informative, VDPs lack information regarding the spatial distribution of defects. We developed a method of quantifying the focality/sparseness of ventilation defects in hyperpolarized-gas lung MR images.

View Article and Find Full Text PDF

Background: The image resolution of fetal brain magnetic resonance imaging (MRI) is a critical factor in brain development measures, which is mainly determined by the physical resolution configured in the MRI sequence. However, fetal brain MRI are commonly reconstructed to 3D images with a higher apparent resolution, compared to the original physical resolution.

Purpose: This work is to demonstrate that accurate segmentation can be achieved based on the MRI physical resolution, and the high apparent resolution segmentation can be achieved by a simple deep learning module.

View Article and Find Full Text PDF

Background: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung.

Purpose: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI.

View Article and Find Full Text PDF

Rationale And Objectives: The current clinical standard for functional imaging of patients with lung ailments is nuclear medicine scintigraphy and Single Photon Emission Computed Tomography (SPECT) which detect the gamma decay of inhaled radioactive tracers. Hyperpolarized (HP) Xenon-129 MRI (XeMRI) of the lungs has recently been FDA approved and provides similar functional images of the lungs with higher spatial resolution than scintigraphy and SPECT. Here we compare Technetium-99m (Tc) diethylene-triamine-pentaacetate scintigraphy and SPECT with HP XeMRI in healthy controls, asthma, and chronic obstructive pulmonary disorder (COPD) patients.

View Article and Find Full Text PDF

Purpose: To assess the effect of lung volume on measured values and repeatability of xenon 129 (Xe) gas uptake metrics in healthy volunteers and participants with chronic obstructive pulmonary disease (COPD).

Materials And Methods: This Health Insurance Portability and Accountability Act-compliant prospective study included data (March 2014-December 2015) from 49 participants (19 with COPD [mean age, 67 years ± 9 (SD)]; nine women]; 25 older healthy volunteers [mean age, 59 years ± 10; 20 women]; and five young healthy women [mean age, 23 years ± 3]). Thirty-two participants underwent repeated Xe and same-breath-hold proton MRI at residual volume plus one-third forced vital capacity (RV+FVC/3), with 29 also undergoing one examination at total lung capacity (TLC).

View Article and Find Full Text PDF

Purpose: The existing tools to quantify lung function in interstitial lung diseases have significant limitations. Lung MRI imaging using inhaled hyperpolarized xenon-129 gas (Xe) as a contrast agent is a new technology for measuring regional lung physiology. We sought to assess the utility of the Xe MRI in detecting impaired lung physiology in usual interstitial pneumonia (UIP).

View Article and Find Full Text PDF

Purpose: To develop and test compressed sensing-based multiframe 3D MRI of grid-tagged hyperpolarized gas in the lung.

Theory And Methods: Applying grid-tagging RF pulses to inhaled hyperpolarized gas results in images in which signal intensity is predictably and sparsely distributed. In the present work, this phenomenon was used to produce a sampling pattern in which k-space is undersampled by a factor of approximately seven, yet regions of high k-space energy remain densely sampled.

View Article and Find Full Text PDF

3D Single-breath Chemical Shift Imaging (3D-SBCSI) is a hybrid MR-spectroscopic imaging modality that uses hyperpolarized xenon-129 gas (Xe-129) to differentiate lung diseases by probing functional characteristics. This study tests the efficacy of 3D-SBCSI in differentiating physiology among pulmonary diseases. A total of 45 subjects-16 healthy, 11 idiopathic pulmonary fibrosis (IPF), 13 cystic fibrosis (CF), and 5 chronic obstructive pulmonary disease (COPD)-were given 1/3 forced vital capacity (FVC) of hyperpolarized Xe-129, inhaled for a ~7 s MRI acquisition.

View Article and Find Full Text PDF

Purpose: To evaluate the accuracy and efficiency of Artificial-Intelligence (AI) segmentation in Total Marrow Irradiation (TMI) including contours throughout the head and neck (H&N), thorax, abdomen, and pelvis.

Methods: An AI segmentation software was clinically introduced for total body contouring in TMI including 27 organs at risk (OARs) and 4 planning target volumes (PTVs). This work compares the clinically utilized contours to the AI-TMI contours for 21 patients.

View Article and Find Full Text PDF

Purpose/objectives: The aim of this study is to compare intrafractional motion using two commercial non-invasive immobilization systems for linac-based intracranial stereotactic radiosurgery (SRS) under guidance with a surface-guided radiotherapy (SGRT) system.

Materials/methods: Twenty-one patients who received intracranial SRS were retrospectively selected. Ten patients were immobilized with a vacuum fixation biteplate system, while 11 patients were immobilized with an open-face mask system.

View Article and Find Full Text PDF

Purpose: In radiotherapy, high radiation exposure to optic nerve (ON) can cause optic neuropathy or vision loss. In this study, we evaluated the pattern and extent of the ON movement using MRI, and investigated the potential dosimetric effect of this movement on radiotherapy.

Methods: MRI was performed in multiple planes in 5 human subjects without optic pathway abnormalities to determine optic nerve motion in different scenarios.

View Article and Find Full Text PDF

Geometric and nomenclature errors are commonly encountered in automated treatment planning. We describe a novel algorithm to extract organ geometry relationships from patient structure DICOM data to construct a database that can be used to detect organ contour inaccuracies including relational and naming errors. Twenty-five sets of head and neck patients' treatment plan data (CT, structures) were retrospectively retrieved from our institution.

View Article and Find Full Text PDF

Purpose: Radiation-induced lung injury (RILI) is a common side effect in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy. Minimizing irradiation into highly functional areas of the lung may reduce the occurrence of RILI. The aim of this study is to evaluate the feasibility and utility of hyperpolarized xenon-129 magnetic resonance imaging (MRI), an imaging tool for evaluation of the pulmonary function, to guide radiotherapy planning.

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) is an unpredictable lung disease, and this study explores hyperpolarized Xenon-129 imaging as a noninvasive way to monitor lung function in IPF patients.
  • The research involved 20 participants (9 healthy and 11 with IPF) who underwent specialized MRI scans and various lung function tests, revealing key differences in how gases and red blood cells interact in healthy versus IPF lungs.
  • Findings indicated that IPF subjects had abnormal gas ratios and longer relaxation times in their lungs, which could indicate lung damage and impaired gas exchange, potentially offering insights into disease progression.
View Article and Find Full Text PDF

Purpose: To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images.

Methods: Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision.

View Article and Find Full Text PDF

Purpose: To develop a method combining CT scout images with axial images to improve the localization accuracy of catheter tips in high-dose-rate (HDR) brachytherapy treatments.

Materials And Methods: CT scout images were utilized along with conventionally reconstructed axial images to aid the localization of catheter tips used during HDR treatment planning. A method was developed to take advantage of the finer image resolution of the scout images to more precisely identify the tip coordinates.

View Article and Find Full Text PDF

Background: Hyperpolarized gas with helium (HHe-3) MR (magnetic resonance) is a noninvasive imaging method which maps and quantifies regions of ventilation heterogeneity (VH) in the lung. VH is an important feature of asthma, but little is known as to how VH informs patient phenotypes.

Purpose: To determine if VH indicators quantified by HHe-3 MR imaging (MRI) predict phenotypic characteristics and map to regions of inflammation in children with problematic wheeze or asthma.

View Article and Find Full Text PDF

Purpose: In this study, we compared hyperpolarized He and Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis.

Materials And Methods: Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both He and Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP.

View Article and Find Full Text PDF

To investigate whether hyperpolarised xenon-129 MRI (HXeMRI) enables regional and physiological resolution of diffusing capacity limitations in chronic obstructive pulmonary disease (COPD), we evaluated 34 COPD subjects and 11 healthy volunteers. We report significant correlations between airflow abnormality quantified by HXeMRI and per cent predicted forced expiratory volume in 1 s; HXeMRI gas transfer capacity to red blood cells and carbon monoxide diffusion capacity (%DLCO); and HXeMRI gas transfer capacity to interstitium and per cent emphysema quantified by multidetector chest CT. We further demonstrate the capability of HXeMRI to distinguish varying pathology underlying COPD in subjects with low %DLCO and minimal emphysema.

View Article and Find Full Text PDF

The purpose of the present study was to integrate an interactive gradient-based needle navigation system and to evaluate the feasibility and accuracy of the system for real-time MR guided needle puncture in a multi-ring phantom and in vivo in a porcine model. The gradient-based navigation system was implemented in a 1.5T MRI.

View Article and Find Full Text PDF

Respiration is a dynamic process accompanied by morphological changes in the airways. Although deformation of large airways is expected to exacerbate pulmonary disease symptoms by obstructing airflow during increased minute ventilation, its quantitative effects on airflow characteristics remain unclear. Here, we used in vivo dynamic imaging and examined the effects of tracheal deformation on airflow characteristics under different conditions based on imaging data from a single healthy volunteer.

View Article and Find Full Text PDF

Purpose: Automatic segmentation of organs-at-risk (OARs) is a key step in radiation treatment planning to reduce human efforts and bias. Deep convolutional neural networks (DCNN) have shown great success in many medical image segmentation applications but there are still challenges in dealing with large 3D images for optimal results. The purpose of this study is to develop a novel DCNN method for thoracic OARs segmentation using cropped 3D images.

View Article and Find Full Text PDF

Rationale And Objectives: Hyperpolarized xenon-129 magnetic resonance (MR) provides sensitive tools that may detect early stages of lung disease in smokers before it has progressed to chronic obstructive pulmonary disease (COPD) apparent to conventional spirometric measures. We hypothesized that the functional alveolar wall thickness as assessed by hyperpolarized xenon-129 MR spectroscopy would be elevated in clinically healthy smokers before xenon MR diffusion measurements would indicate emphysematous tissue destruction.

Materials And Methods: Using hyperpolarized xenon-129 MR we measured the functional septal wall thickness and apparent diffusion coefficient of the gas phase in 16 subjects with smoking-related COPD, 9 clinically healthy current or former smokers, and 10 healthy never smokers.

View Article and Find Full Text PDF

Obesity is increasingly prevalent and associated with increased risk of developing type 2 diabetes, cardiovascular diseases, and cancer. Magnetic resonance imaging (MRI) is an accurate method for determination of body fat volume and distribution. However, quantifying body fat from numerous MRI slices is tedious and time-consuming.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrp0p9d6dqba09qsj03jstvlqni9grqot): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once