Designing a solid-state electrolyte that satisfies the operating requirements of solid-state batteries is key to solid-state battery applications. The consensus is that solid-state electrolytes need to allow fast ion transport, while providing better interfacial compatibility and mechanical tolerance. Herein, a simple but effective strategy is proposed, combining hard and soft component polymer systems, to exploit a solid polymer electrolyte (SPE) with a 3D network via an in situ graft polymerization.
View Article and Find Full Text PDFNanocomposites containing nanoscale materials offer exciting opportunities to encode nanoscale features into macroscale dimensions, which produces unprecedented impact in material design and application. However, conventional methods cannot process nanocomposites with a high particle loading, as well as nanocomposites with the ability to be tailored at multiple scales. A composite architected mesoscale process strategy that brings particle loading nanoscale materials combined with multiscale features including nanoscale manipulation, mesoscale architecture, and macroscale formation to create spatially programmed nanocomposites with high particle loading and multiscale tailorability is reported.
View Article and Find Full Text PDFContinuous, one-dimensional (1D) stretchable conductors have attracted significant attention for the development of wearables and soft-matter electronics. Through the use of advanced spinning, printing, and textile technologies, 1D stretchable conductors in the forms of fibers, wires, and yarns can be designed and engineered to meet the demanding requirements for different wearable applications. Several crucial parameters, such as microarchitecture, conductivity, stretchability, and scalability, play essential roles in designing and developing wearable devices and intelligent textiles.
View Article and Find Full Text PDFFunctional textiles with superhydrophobicity and high adhesion to water, called parahydrophobic, are attracting increasing attention from industry and academia. The hierarchical (micronanoscale) surface patterns in nature provide an excellent reference for the manufacture of parahydrophobic functional textiles. However, the replication of the complex parahydrophobic micronanostructures in nature exceeds the ability of traditional manufacturing strategies, which makes it difficult to accurately manufacture controllable nanostructures on yarn and textiles.
View Article and Find Full Text PDFUsing a three-dimensional (3D) Li-ion conducting ceramic network, such as LiLaZrO (LLZO) garnet-type oxide conductor, has proved to be a promising strategy to form continuous Li ion transfer paths in a polymer-based composite. However, the 3D network produced by brittle ceramic conductor nanofibers fails to provide sufficient mechanical adaptability. In this manuscript, we reported a new 3D ion-conducting network, which is synthesized from highly loaded LLZO nanoparticles reinforced conducting polymer nanofibers, by creating a lightweight continuous and interconnected LLZO-enhanced 3D network to outperform conducting heavy and brittle ceramic nanofibers to offer a new design principle of composite electrolyte membrane featuring all-round properties in mechanical robustness, structural flexibility, high ionic conductivity, lightweight, and high surface area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
With the rapid development of nanomanufacturing, scaling up of nanomaterials requires advanced manufacturing technology to composite nanomaterials with disparate materials (ceramics, metals, and polymers) to achieve hybrid properties and coupling performances for practical applications. Attempts to assemble nanomaterials onto macroscopic materials are often accompanied by the loss of exceptional nanoscale properties during the fabrication process, which is mainly due to the poor contacts between carbon nanomaterials and macroscopic bulk materials. In this work, we proposed a novel cross-scale manufacturing concept to process disparate materials in different length scales and successfully demonstrated an electrothermal shock approach to process the nanoscale material (e.
View Article and Find Full Text PDFMultifarious wearable electronics with flexible touch screens have been invented for extensive outdoor activities. One challenge associated with these wearable electronics is the development of materials with both high dielectric permittivity and anisotropic light transmission, which is responsible for high touch sensitivity and screen peep-proof protection, respectively. Herein, we demonstrated a scalable approach for assembling and aligning anisotropic cellulose in a polymer matrix through the thickness direction via the assistance of an electric field to address this challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2019
Supported metallic nanoclusters (NCs, < 2 nm) are of great interests in various catalytic reactions with enhanced activities and selectivities, yet it is still challenging to efficiently and controllably synthesize ultrasmall NCs with a high-dispersal density. Here we report the in situ synthesis of surfactant-free, ultrasmall, and uniform NCs via a rapid thermal shock on defective substrates. This is achieved by using high-temperature synthesis with extremely fast kinetics while limiting the synthesis time down to milliseconds (e.
View Article and Find Full Text PDFCarbon nanomaterials are desirable candidates for lightweight, highly conductive, and corrosion-resistant current collectors. However, a key obstacle is their weak interconnection between adjacent nanostructures, which renders orders of magnitude lower electrical conductivity and mechanical strength in the bulk assemblies. Here we report an "epitaxial welding" strategy to engineer carbon nanotubes (CNTs) into highly crystalline and interconnected structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2017
The interface between solid electrolytes and Li metal is a primary issue for solid-state batteries. Introducing a metal interlayer to conformally coat solid electrolytes can improve the interface wettability of Li metal and reduce the interfacial resistance, but the mechanism of the metal interlayer is unknown. In this work, we used magnesium (Mg) as a model to investigate the effect of a metal coating on the interfacial resistance of a solid electrolyte and Li metal anode.
View Article and Find Full Text PDFThe synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor.
View Article and Find Full Text PDFIn a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an 'electron battery' configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical energy density in comparison to conventional state-of-the-art lithium-ion batteries. However, low sulfur mass loading in the cathode results in low areal capacity and impedes the practical use of Li-S cells. Inspired by wood, a cathode architecture with natural, three-dimensionally (3D) aligned microchannels filled with reduced graphene oxide (RGO) were developed as an ideal structure for high sulfur mass loading.
View Article and Find Full Text PDFSolid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet-type LiLaZrO (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 to 10 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface.
View Article and Find Full Text PDFSubstantial efforts are underway to develop all-solid-state Li batteries (SSLiBs) toward high safety, high power density, and high energy density. Garnet-structured solid-state electrolyte exhibits great promise for SSLiBs owing to its high Li-ion conductivity, wide potential window, and sufficient thermal/chemical stability. A major challenge of garnet is that the contact between the garnet and the Li-metal anodes is poor due to the rigidity of the garnet, which leads to limited active sites and large interfacial resistance.
View Article and Find Full Text PDFGarnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major challenge being the high solid-solid interfacial impedance between the garnet electrolyte and electrode materials. In this work, we effectively address the large interfacial impedance between a lithium metal anode and the garnet electrolyte using ultrathin aluminium oxide (AlO) by atomic layer deposition.
View Article and Find Full Text PDFCarbon nanomaterials exhibit outstanding electrical and mechanical properties, but these superior properties are often compromised as nanomaterials are assembled into bulk structures. This issue of scaling limits the use of carbon nanostructures and can be attributed to poor physical contacts between nanostructures. To address this challenge, we propose a novel technique to build a 3D interconnected carbon matrix by forming covalent bonds between carbon nanostructures.
View Article and Find Full Text PDFAll-solid-state Li-batteries using solid-state electrolytes (SSEs) offer enhanced safety over conventional Li-ion batteries with organic liquid electrolytes due to the nonflammable nature of SSEs. The superior mechanical strength of SSEs can also protect against Li dendrite penetration, which enables the use of the highest specific capacity (3861 mAh/g) and lowest redox potential (-3.04 V vs standard hydrogen electrode) anode: Li metal.
View Article and Find Full Text PDFA bilayer actuator made of carbon nanotubes (CNTs) and boron nitride (BN) is developed that can withstand high temperatures. The bilayer actuator can be powered quickly to a temperature up to 2000 K within 100 ms and can operate at frequencies from sub-Hertz to about 30 Hz due to the low heat capacity of the thin CNT layer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2016
Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode).
View Article and Find Full Text PDFOn page 4684, C. Dames, L. Hu and co-workers report highly efficient, broadband lighting from printed hybrid nanocarbon structures with carbon nanotubes and reduced graphene oxides.
View Article and Find Full Text PDFHigh temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere.
View Article and Find Full Text PDFHighly efficient broadband thermal radiation from reduced graphene oxide (RGO) paper mixed with single-walled carbon nanotubes (CNTs) is reported. These RGO-CNT paper ribbons routinely reach 3000 K before failure, with some samples exceeding 3300 K, higher than any other carbon nanomaterial. Excellent performance is achieved, with ≈90% radiation efficiency, 200 000 on/off cycles, and stable operation for more than 50 hours.
View Article and Find Full Text PDF