Publications by authors named "Kun Gou"

Cell shapes in tissues are affected by the biophysical interaction between cells. Tissue forces can influence specific cell features such as cell geometry and cell surface area. Here, we examined the 2-dimensional shape, size, and perimeter of pleural epithelial cells at various lung volumes.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that blocking a protein called LSD1 can make healthy ovarian cancer cells act like they have DNA repair issues.
  • * This means that using LSD1 inhibitors could help more patients benefit from PARPi, even if their cancer cells usually repair DNA well, so they want to test this idea in people soon.
View Article and Find Full Text PDF

As a key rate-limiting enzyme in the synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (DHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1-pyrazolo[3,4-]pyridine scaffold was identified as an DHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1-pyrrolo[2,3-]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (, which was found to be the most promising and drug-like compound with potent inhibitory activity against DHODH (IC = 173.

View Article and Find Full Text PDF

Targeting mitochondrial complex I (CI) is emerging as an attractive anticancer strategy, and CI inhibitor IACS-010759 has achieved breakthrough success. However, the narrow therapeutic index of IACS-010759 seriously hinders its further application. In this study, a series of novel pyrazole amides were designed and optimized based on IACS-010759, and their potential CI inhibitory effects were biologically evaluated.

View Article and Find Full Text PDF

Lysine-specific histone demethylase 1 (LSD1) is an attractive target for malignancies therapy. Nevertheless, its role in hepatocellular carcinoma (HCC) progression and the potential of its inhibitor in HCC therapy remains unclear. Here, we show that LSD1 overexpression in human HCC tissues is associated with HCC progression and poor patient survival.

View Article and Find Full Text PDF

The decellularized human umbilical artery (HUA) is considered as a promising option for small-diameter, tissue-engineered vascular grafts (TEVGs). Our previous study showed that the HUA bears a thin, watertight lining on its outermost abluminal surface. Removal of this abluminal lining layer improves efficacy of the perfusion-assisted decellularization of the HUA and increases its compliance.

View Article and Find Full Text PDF

Blocking the de novo biosynthesis of pyrimidine by inhibiting human dihydroorotate dehydrogenase (hDHODH) is an effective way to suppress the proliferation of cancer cells and activated lymphocytes. Herein, eighteen teriflunomide derivatives and four ASLAN003 derivatives were designed and synthesized as novel hDHODH inhibitors based on a benzophenone scaffold. The optimal compound 7d showed a potent hDHODH inhibitory activity with an IC value of 10.

View Article and Find Full Text PDF

Human dihydroorotate dehydrogenase (hDHODH) is a key enzyme in the de novo synthesis pathway of pyrimidine nucleotide in cells. The moderate efficiency of teriflunomide, an approved hDHODH inhibitor for the treatment of multiple sclerosis, limited its therapeutic application of malignancy. Herein, thirty-seven novel teriflunomide derivatives with a biphenyl scaffold were designed, synthesized and evaluated.

View Article and Find Full Text PDF

The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy.

View Article and Find Full Text PDF

Human dihydroorotate dehydrogenase (DHODH), as the fourth and rate-limiting enzyme of the pyrimidine synthesis pathway, is regarded as an attractive target for malignancy therapy. In the present study, a novel series of teriflunomide derivatives were designed, synthesized, and evaluated as DHODH inhibitors. was the optimal compound with promising enzymatic activity (IC = 16.

View Article and Find Full Text PDF

Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis.

View Article and Find Full Text PDF

Growth is a significant factor that results in deformations of tubular organs, and particular deformations associated with growth enable tubular organs to perform certain physiological functions. Configuring growth profiles that achieve particular deformation patterns is critical for analyzing potential pathological conditions and for developing corresponding clinical treatments for tubular organ dysfunctions. However, deformation-targeted growth is rarely studied.

View Article and Find Full Text PDF

Serine, the source of the one-carbon units essential for de novo purine and deoxythymidine synthesis plays a crucial role in the growth of cancer cells. Phosphoglycerate dehydrogenase (PHGDH) which catalyzes the first, rate-limiting step in de novo serine biosynthesis has become a promising target for the cancer treatment. Here we identified H-G6 as a potential PHGDH inhibitor from the screening of an in-house small molecule library based on the enzymatic assay.

View Article and Find Full Text PDF

Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells.

View Article and Find Full Text PDF

During pregnancy, the cervix experiences significant mechanical property change due to tissue swelling, and to ongoing changes in the collagen content. In this paper, we model how these two effects contribute to cervical deformation as the pressure load on top of the cervix increases. The cervix and its surrounding supporting ligaments are taken into consideration in the resulting mechanical analysis.

View Article and Find Full Text PDF

Recent studies suggest that cells routinely probe their mechanical environments and that this mechanosensitive behavior regulates some of their cellular activities. The finite elasticity theory of small-on-large deformation (SoL) has been shown to be effective in interpreting the mechanosensitive behavior of cells on a substrate that has been subjected to a prior large static stretch before the culturing of the cells. Small on large deformation is the superposition of a small deformation onto a prior large deformation that serves as the new reference configuration.

View Article and Find Full Text PDF

A continuum mechanics constitutive model is presented for the interaction between swelling and collagen remodeling in biological soft tissue. The model is inherently two-way: swelling stretches the collagen fibers which affects their rate of degradation-the remodeled fibrous microarchitecture provides selective directional stiffening that causes the swollen tissue to expand more in the unreinforced directions. The constitutive model specifically treats stretch-stabilization wherein the rate of enzymatic-induced degradation of collagen is a decreasing function of fiber stretch.

View Article and Find Full Text PDF

Angioedema is a tissue-swelling pathology due to rapid change in soft tissue fluid content. Its occurrence in the trachea is predominantly localized to the soft mucous tissue that forms the innermost tracheal layer. The biomechanical consequences, such as airway constriction, are dependent upon the ensuing mechanical interactions between all of the various tissues that comprise the tracheal tube.

View Article and Find Full Text PDF

Angioedema, the rapid swelling of under-skin tissue, is typically triggered by complex biochemical processes that disrupt an original steady state filtration of liquid through the tissue. Swelling stabilizes once a new steady state is achieved in which the tissue has significantly increased liquid content. These processes are controlled by events at the molecular to the cellular length scale.

View Article and Find Full Text PDF