, the pathogenic helical spirochetes that cause leptospirosis, is an emerging zoonotic disease with effective dissemination tactics in the host and can infect humans and animals with moderate or severe illnesses. Thus, peptide-based vaccines may be the most effective strategy to manage the immune response against to close these gaps. In the current investigation, highly immunogenic proteins from the proteome of serogroup Icterohaemorrhagie serovar Lai strain 56601 were identified using immunoinformatic methods.
View Article and Find Full Text PDFLeptospira species are the etiological agent of an emerging zoonotic disease known as "Leptospirosis" that substantially affects both human health and economy across the globe. Despite the global importance of the disease, pathogenetic features, host-adaptation and proper diagnosis of this bacteria remains lacking. To accomplish these gaps, pan-genome of Leptospira genus was explored in the present study.
View Article and Find Full Text PDFLeptospirosis is a re-emerging bacterial zoonosis caused by pathogenic Leptospira, with a worldwide distribution and becoming a major public health concern. Prophylaxis of this disease is difficult due to several factors such as non-specific variable clinical manifestation, presence of a large number of serovar, species and asymptomatic reservoir hosts, lack of proper diagnostics and vaccines. Despite its global importance and severity of the disease, knowledge about the molecular mechanism of pathogenesis and evolution of pathogenic species of Leptospira remains limited.
View Article and Find Full Text PDFVaccination is the best way to prevent the spread of emerging or reemerging infectious disease. Current research for vaccine development is mainly focused on recombinant-, subunit-, and peptide-based vaccine. At this point, immunoinformatics has been proven as a powerful method for identification of potential vaccine candidates, by analyzing immunodominat B- and T-cell epitopes.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFLeptospirosis is the most emerging zoonotic disease of epidemic potential caused by pathogenic species of Leptospira. The bacterium invades the host system and causes the disease by interacting with the host proteins. Analyzing these pathogen-host protein interactions (PHPIs) may provide deeper insight into the disease pathogenesis.
View Article and Find Full Text PDFLeptospirosis is a potentially fatal zoo-anthroponosis caused by pathogenic species of Leptospira belonging to the family of Leptospiraceae, with a worldwide distribution and effect, in terms of its burden and risk to human health. The 'LeptoDB' is a single window dedicated architecture (5 948 311 entries), modeled using heterogeneous data as a core resource for global Leptospira species. LeptoDB facilitates well-structured knowledge of genomics, proteomics and therapeutic aspects with more than 500 assemblies including 17 complete and 496 draft genomes encoding 1.
View Article and Find Full Text PDFLeptospirosis is the most widespread zoonotic disease, estimated to cause severe infection in more than one million people each year, particularly in developing countries of tropical areas. Several factors such as variable and nonspecific clinical manifestation, existence of large number of serovars and asymptomatic hosts spreading infection, poor sanitation and lack of an effective vaccine make prophylaxis difficult. Consequently, there is an urgent need to develop an effective vaccine to halt its spread all over the world.
View Article and Find Full Text PDF