Metal ions have great significance for agricultural development, food safety, and human health. In turn, there exists an imperative need for the development of novel, sensitive, and reliable sensing techniques for various metal ions. Agricultural sensors for the diagnosis of both agricultural safety and nutritional health can establish quality and safety traceability systems of both agro-products and food to guarantee human health, even life safety.
View Article and Find Full Text PDFThree layer-by-layer (LBL) assembled gold nanoparticles (AuNPs)/lower-generation (Gn≤3) polyamidoamine dendrimer (PD) with reduced graphene oxide (rGO) as the core/mercaptopropinoic acid (MPA)/Au were successfully fabricated and employed as electrochemical gene nanobiosensing platforms with three-dimensional (3D) fractal nanoarchitecture for fast, ultra-trace determination of label-free DNA hybridization. Three Gn≤3PD were initially grafted to graphite oxide (GO) via the covalent functionalization between amino terminals of PD and carboxyl terminals of GO where a concomitant reduction of GO, which were covalently linked onto MPA that was self-assembled onto Au substrate, and finally AuNPs were encapsulated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, Their morphologies, structures, electrochemical properties, and gene nanobiosensing performances were characterized and evaluated. AuNPs/GG2PD-based probe displayed the best excellent structural stability, lowest mobility on solid surface with the increasing charge resistance, widest linear range (1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2018
The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN)] as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 to 1 × 10 g m with a low detection limit of 9.
View Article and Find Full Text PDFCorrection for 'One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor' by Jayakumar Kumarasamy, et al., Nanoscale, 2018, DOI: 10.1039/c7nr06952a.
View Article and Find Full Text PDFA layer-by-layer (LBL) assembly was employed for preparing multilayer thin films with a controlled architecture and composition. In this study, we report the one-step coelectrodeposition-assisted LBL assembly of both gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) on the surface of a glassy carbon electrode (GCE) for the ultrasensitive electrochemical impedance sensing of DNA hybridization. A self-healable nanohybrid thin film with a three-dimensional (3D) alternate-layered nanoarchitecture was obtained by the one-step simultaneous electro-reduction of both graphene oxide and gold chloride in a high acidic medium of HSO using cyclic voltammetry and was confirmed by different characterization techniques.
View Article and Find Full Text PDFGraphene oxide is chemically functionalized using planar structured first generation polyamidoamine dendrimer (G1PAMAM) to form graphene core GG1PAMAM. The monolayer of GG1PAMAM is anchored on the 3-mercapto propionic acid monolayer pre-immobilized onto a gold transducer. The GG1PAMAM is decorated using gold nanoparticles for the covalent attachment of single-stranded DNA through simple gold-thiol chemistry.
View Article and Find Full Text PDF