Publications by authors named "Kumar V Srinivasan"

Medicinal chemistry has been benefited by combinatorial chemistry and high-throughput parallel synthesis. Ionic liquids reduce the materials and energy intensity of chemical processes and products, minimize or eliminate the dispersion of harmful chemicals in the environment, maximize the use of renewable resources and extend the durability and recyclability of products. It is possible to tune the physical and chemical properties by varying the nature of the cations and anions.

View Article and Find Full Text PDF

Targeting papain family cysteine proteases is one of the novel strategies in the development of chemotherapy for a number of diseases. Novel cysteine protease inhibitors derived from 1-pyridylimidazo[1,5-a]pyridine representing pharmacologically important class of compounds are being reported here for the first time. The derivatives were initially designed and screened in silico by molecular docking studies against papain to explore the possible mode of action.

View Article and Find Full Text PDF

Remarkably high-speed synthesis of 2-substituted amino-4-aryl thiazoles in polar solvents with a minimum threshold polarity index of 4.8 was found to proceed to completion in just 30-40 sec. affording excellent yields of thiazoles under ambient temperature conditions without the use of any additional catalyst.

View Article and Find Full Text PDF

Some novel chemically synthesized 2,4,5-trisubstituted imidazoles from aryl aldehydes and 1,2-diketones or alpha-hydroxyketone were screened against eight different human pathogenic bacteria and fungi. Seven compounds were found to be active against different bacteria. These compounds showed variation in activity and were found to be active against Gram-positive as well as Gram-negative bacteria.

View Article and Find Full Text PDF

This method describes the results of the optimized conditions for the one-pot synthesis of benzo[b]furans/nitro benzo[b]furans via Sonogashira coupling-5-endo-dig-cyclization under ultrasonic irradiation at ambient temperature in the absence of copper, ligand and amine. The protocol tolerates wide range of functional groups present in both the coupling components, especially base labile nitro group was not affected under these mild conditions giving excellent yields of the nitro benzo[b]furans. The formation of Pd(0) nanoparticles as the active species has been shown by TEM analysis and the unique role of ultrasound in promoting the total sonochemical protocol has been substantiated by way of control experiments.

View Article and Find Full Text PDF

A series of 2-amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and various analogues have been synthesized in excellent isolated yields starting from various arylidenemalononitrile and 3-amino-2-cyclohexen-1-one in 1-propanol as solvent at reflux temperature in the absence of any added catalyst. All the synthesized compounds were evaluated for their antifungal activity. The relationship between functional group variation and biological activity of the evaluated compounds is discussed in the article.

View Article and Find Full Text PDF

The Sonogashira reaction proceeds at ambient temperature (30 degrees C) in acetone or room-temperature ionic liquid, 1,3-di-n-butylimidazolium tetrafluoroborate ([bbim]BF4), as solvent under ultrasound irradiation to give enhanced reaction rates, excellent chemoselectivity, and high yields in the absence of a copper cocatalyst and a phosphine ligand. TEM analysis showed the formation of stable, crystalline, and polydispersed Pd(0) nanoparticles as catalyst for the reaction.

View Article and Find Full Text PDF

Several room-temperature ionic liquids (ILs) based on 1-butylimidazolium salts with varying anions were synthesized and evaluated for the preparation of biologically active substituted quinolines and fused polycyclic quinolines using the Friedlander heteroannulation reaction. On screening, 1-butylimidazolium tetrafluoroborate [Hbim]BF4 was found to be the best ionic liquid for the heteroannulation reaction, and the reasons to this effect are well explained. The reactions proceed very well under relatively mild conditions without any added catalyst.

View Article and Find Full Text PDF