Publications by authors named "Kumar Nitish"

Diabetes Mellitus is a metabolic disorder which has affected over 476 million people globally with projections indicating a further increase in this number. Despite the availability of treatment therapies, maintaining optimal blood glucose levels remains a critical task. During literature survey, we came across Insulin degrading enzyme (IDE) which is responsible for insulin degradation in the body and inhibition of this enzyme could increase the bioavailability of insulin in the body.

View Article and Find Full Text PDF

The ability to tailor surface area, porosity, and morphologies has driven extensive research into the synthesis of metal-organic frameworks derived carbons and their applications in energy storage. This study presents the development of three-dimensional hierarchically porous carbon derived from polystyrene and small-sized zeolitic imidazolate framework-8 (ZIF-8) particles. Incorporating nanometer-sized ZIF-8 particles forms a core-shell structure in the pre-carbonization stage, transforming into a porous carbon material with a range of pores from micro to macropores after carbonization.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a persistent autoimmune condition characterized by inflammation and neurodegeneration. The current efficacy of treatments is limited, which has generated interest in developing neuroprotective strategies. Solid lipid nanoparticles (SLNs) and probiotics are potential drug delivery vehicles for targeting the CNS (Central nervous system), regulating immune responses, and supporting neuroprotection in neurological conditions.

View Article and Find Full Text PDF

In this paper, the phototransistor behavior is investigated in the germanium-on-insulator (GeOI)-based junctionless nanowire (JL-NW) transistor under various light conditions. High responsivity and photosensitivity are attributed in the fully depleted regime within the visible and near-infrared bands. The impact of light is also investigated in detail on the electronic and transfer characteristics such as energy bandgap, carrier distribution, electrostatic potential, electric field, generation and recombination rates.

View Article and Find Full Text PDF

This study investigates the molecular targets and pathways affected by valencene in non-small cell lung cancer (NSCLC) through network pharmacology and in vitro assays. Valencene's chemical structure was sourced from PubChem, and target identification utilized the PharmMapper database, cross-referenced with UniProtKB for official gene symbols. NSCLC-associated targets were identified via GeneCards, followed by protein-protein interaction analysis using STRING.

View Article and Find Full Text PDF

SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification.

View Article and Find Full Text PDF

Stevia rebaudiana (Bertoni), commonly known as stevia, is a sought-after natural sweetener, but its conventional propagation methods are slow and inefficient. This study aims to enhance the in vitro culture for stevia by investigating the impact of different Murashige and Skoog (MS) medium salt strengths and plant growth hormones on growth and rebaudioside A content. Apical bud-containing shoot segments were used as explants and cultured on various semi-solid and liquid MS media formulations, incorporating cytokinins (BAP and Kin), auxins (NAA and IAA), and different MS major salt concentrations (MS full, ½ MS, and ¼ MS).

View Article and Find Full Text PDF

In this review, the recent development of blue perovskite light-emitting diodes (PeLED) are summarized. On deep-blue (≤465 nm) perovskite nanomaterials of different structural forms are mainly focused, including nanocrystals (NCs), quantum dots (QDs), nanoplatelets (NPLs), quasi-2D thin film, 3D bulk thin film, as well as lead-free perovskite nanomaterials. The current challenges are also examined in producing efficient deep-blue PeLED, such as material and spectral instability, imbalance charge transport, Joule heat impact, and poor optoelectronic performance.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to evaluate the effectiveness of intralesional sclerotherapy using 3% sodium tetradecyl sulfate versus traditional treatments for managing epistaxis (nosebleeds) in patients with Hereditary Hemorrhagic Telangiectasia (HHT).
  • The study included a review of patient records from January 2010 to February 2024, comparing outcomes like frequency of nosebleeds, blood loss during surgery, and complications over a 3-month follow-up period.
  • Results showed that sclerotherapy led to fewer episodes of breakthrough epistaxis and significantly less intraoperative blood loss compared to non-sclerotherapy procedures, while showing similar intervals between treatments and a relatively low complication rate.
View Article and Find Full Text PDF

Introduction: Giant cell tumor (GCT) is a benign locally aggressive tumor with features of frequent recurrence and metastatic potential. GCT of small bones of hand and feet is rare with high recurrence and potential to metastasis. This study aims to provide a case report of GCT of the first metatarsal treated with wide excision, autologous fibular grafting, and fixation with locking plate.

View Article and Find Full Text PDF

Antimicrobial resistance poses a global health concern and develops a need to discover novel antimicrobial agents or targets to tackle this problem. Fluoroquinolone (FN), a DNA gyrase and topoisomerase IV inhibitor, has helped to conquer antimicrobial resistance as it provides flexibility to researchers to rationally modify its structure to increase potency and efficacy. This review provides insights into the rational modification of FNs, the causes of resistance to FNs, and the mechanism of action of FNs.

View Article and Find Full Text PDF

A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat.

View Article and Find Full Text PDF

Most neurons are not replaced after injury and thus possess robust intrinsic mechanisms for repair after damage. Axon injury triggers a calcium wave, and calcium and cAMP can augment axon regeneration. In comparison to axon regeneration, dendrite regeneration is poorly understood.

View Article and Find Full Text PDF

The current study is the first to describe the temporal and differential transcriptional expression of two lytic polysaccharide monooxygenase (LPMO) genes of Rasamsonia emersonii in response to various carbon sources. The mass spectrometry based secretome analysis of carbohydrate active enzymes (CAZymes) expression in response to different carbon sources showed varying levels of LPMOs (AA9), AA3, AA7, catalase, and superoxide dismutase enzymes pointing toward the redox-interplay between the LPMOs and auxiliary enzymes. Moreover, it was observed that cello-oligosaccharides have a negative impact on the expression of LPMOs, which has not been highlighted in previous reports.

View Article and Find Full Text PDF

Xanthine oxidase (XO) inhibitors, both synthetic and semisynthetic, have been developed extensively over the past few decades. The increased level of XO is not only the major cause of gout but is also responsible for various conditions associated with hyperuricemia, such as cardiovascular disorders, chronic kidney disorders, diabetes, Alzheimer's disease and chronic wounds. Marketed available XO inhibitors (allopurinol, febuxostat, and topiroxostat) are used to treat hyperuricemia but they are associated with fatal side effects, which pose serious problems for the healthcare system, rising the need for new, more potent, safer compounds.

View Article and Find Full Text PDF

Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms.

View Article and Find Full Text PDF

Lake water surface temperature (LWST) is a critical component in understanding the response of freshwater ecosystems to climate change. Traditional estimation of LWST estimation considers water surface bodies to be static. Our work proposes a novel open-source web application, IMPART, designed for estimating dynamic LWST using Landsat reflectance and MODIS temperature datasets from 2004 to 2022.

View Article and Find Full Text PDF
Article Synopsis
  • - Exosomes are tiny extracellular vesicles that help cells communicate and play a complex role in central nervous system disorders, having both positive and negative effects.
  • - Recent research highlights their involvement in neurodegenerative diseases, showing how they carry proteins and reflect the internal cellular environment.
  • - The article focuses on the production and functions of exosomes as potential biomarkers in neurodegenerative disorders, emphasizing their protective roles in nervous tissue regeneration and healing.
View Article and Find Full Text PDF

Plant metabolomics, a rapidly advancing field within plant biology, is dedicated to comprehensively exploring the intricate array of small molecules in plant systems. This entails precisely gathering comprehensive chemical data, detecting numerous metabolites, and ensuring accurate molecular identification. Nuclear magnetic resonance (NMR) spectroscopy, with its detailed chemical insights, is crucial in obtaining metabolite profiles.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: