Phytohormone auxin controls various aspects of plant growth and development. The typical auxin signalling involves the degradation of canonical Aux/IAA proteins upon auxin perception releasing the auxin response factors (ARF) to activate auxin-regulated gene expression. Extensive research has been pursued in deciphering the role of canonical Aux/IAAs, however, the function of non-canonical genes remains elusive.
View Article and Find Full Text PDFEngineered nanomaterials can provide eco-friendly alternatives for crop disease management. Chitosan based nanoparticles has shown beneficial applications in sustainable agricultural practices and effective healthcare. Previously we demonstrated that Thymol loaded chitosan nanoparticles (TCNPs) showed bactericidal activity against pv a bacterium that causes black rot disease in brassica crops.
View Article and Find Full Text PDFThe bacterium pv. () causes black rot disease in cruciferous crops, resulting in severe yield loss worldwide. The excessive use of chemical pesticides in agriculture to control diseases has raised significant concern about the impact on the environment and human health.
View Article and Find Full Text PDFProduction of a volatile phenylpropene; eugenol in sweet basil is mostly associated with peltate glandular trichomes (PGTs) found aerially. Currently only one eugenol synthase (EGS), ObEGS1 which belongs to PIP family is identified from sweet basil PGTs. Reports of the presence of eugenol in roots led us to analyse other EGSs in roots.
View Article and Find Full Text PDFSpearmint produces and stores large amounts of monoterpenes, mainly limonene and carvone, in glandular trichomes and is the major natural source of these compounds. Towards producing heterologous monoterpenes in spearmint, we first reduced the flux into the native limonene pathway by knocking down the expression of limonene synthase () by RNAi method. The RNAi lines exhibited a huge reduction in the synthesis of limonene and carvone.
View Article and Find Full Text PDFSweet basil (Ocimum basilicum) plants produce its characteristic phenylpropene-rich essential oil in specialized structures known as peltate glandular trichomes (PGTs). Eugenol and chavicol are the major phenylpropenes produced by sweet basil varieties whose synthetic pathways are not fully elucidated. Eugenol is derived from coniferyl acetate by a reaction catalysed by eugenol synthase.
View Article and Find Full Text PDFMany aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it.
View Article and Find Full Text PDFIn many aromatic plants including spearmint (Mentha spicata), the sites of secondary metabolite production are tiny specialized structures called peltate glandular trichomes (PGT). Having high commercial values, these secondary metabolites are exploited largely as flavours, fragrances and pharmaceuticals. But, knowledge about transcription factors (TFs) that regulate secondary metabolism in PGT remains elusive.
View Article and Find Full Text PDFGlutathione S-transferases (GSTs) exist in various eukaryotes and function in detoxification of xenobiotics and in response to abiotic and biotic stresses. We have carried out a genome-wide survey of this gene family in 10 plant genomes. Our data show that tandem duplication has been regarded as the major expansion mechanism and both monocot and dicot plants may have practiced different expansion and evolutionary history.
View Article and Find Full Text PDFWRKY transcription factors play important roles in the regulation of various biological processes. We have analyzed the publicly available rice genome sequence databases and predicted 103 genes encoding WRKY transcription factors. Among them, the majority of rice WRKY genes (77.
View Article and Find Full Text PDF