Publications by authors named "Kumar Durairaj"

Biomass fuels (wood) are commonly used indoors in underventilated environments for cooking in the developing world, but the impact on lung physiology is poorly understood. Quantitative computed tomography (qCT) can provide sensitive metrics to compare the lungs of women cooking with wood vs. liquified petroleum gas (LPG).

View Article and Find Full Text PDF

Background: Cooks exposed to biomass fuel experience increased risk of respiratory disease and mortality. We sought to characterize lung function and environmental exposures of primary cooking women using two fuel-types in southeastern India, as well as to investigate the effect of particulate matter (PM) from kitchens on human airway epithelial (HAE) cells in vitro.

Methods: We assessed pre- and post-bronchodilator lung function on 25 primary female cooks using wood biomass or liquified petroleum gas (LPG), and quantified exposures from 34 kitchens (PM, PM < 40 μm, black carbon, endotoxin, and PM metal and bacterial content).

View Article and Find Full Text PDF

Background: Lung cancer is the leading cause of cancer related deaths and its incidence is highly correlated with cigarette smoking. Nicotine, the addictive component of tobacco smoke, cannot initiate tumors, but can promote proliferation, migration, and invasion of cells in vitro and promote tumor growth and metastasis in vivo. This nicotine-mediated tumor promotion is facilitated through the activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit.

View Article and Find Full Text PDF

The current treatment for glioblastoma includes temozolomide (TMZ) chemotherapy, yet the mechanism of action of TMZ is not thoroughly understood. Here, we investigated the TMZ-induced changes in the proteome of the glioma-derived cell line (U251) by 2D DIGE. We found 95 protein spots to be significantly altered in their expression after TMZ treatment.

View Article and Find Full Text PDF

The search for molecular markers which predict response to chemotherapy is an important aspect of current neuro-oncology research. MGMT promoter methylation is the only proved marker of glioblastoma. The purpose of this study was to assess the effect of topoisomerase expression on glioblastoma survival and study the mechanisms involved.

View Article and Find Full Text PDF

Glioblastoma (GBM; grade IV astrocytoma) is the most malignant and common primary brain tumor in adults. Using combination of 2-DE and MALDI-TOF MS, we analyzed 14 GBM and 6 normal control sera and identified haptoglobin α2 chain as an up-regulated serum protein in GBM patients. GBM-specific up-regulation was confirmed by ELISA based quantitation of haptoglobin (Hp) in the serum of 99 GBM patients as against lower grades (49 grade III/AA; 26 grade II/DA) and 26 normal individuals (p = 0.

View Article and Find Full Text PDF

Background: The aim of this study is to identify serum biomarkers with classification and prognosis utility for astrocytoma, in particular glioblastoma (GBM).

Methods: Our previous glioma microarray database was mined to identify genes that encode secreted or membrane-localized proteins. Subsequent analysis was done using significant analysis of microarrays, followed by reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemical validation in tumor tissues, ELISA and Western blot validation in sera, and correlation with survival of GBM patients.

View Article and Find Full Text PDF

The prognosis of patients with glioblastoma, the most malignant adult glial brain tumor, remains poor in spite of advances in treatment procedures, including surgical resection, irradiation and chemotherapy. Genetic heterogeneity of glioblastoma warrants extensive studies in order to gain a thorough understanding of the biology of this tumor. While there have been several studies of global transcript profiling of glioma with the identification of gene signatures for diagnosis and disease management, translation into clinics is yet to happen.

View Article and Find Full Text PDF

Molecular imaging is an emerging imaging technique in biological and medical field. Thereinto, bioluminescence tomography (BLT) plays a significant role. In view of the ill-posedness of the BLT problem, a priori knowledge is indispensable to reconstruct bioluminescent source uniquely and quantitatively.

View Article and Find Full Text PDF

Currently, we are developing a computational optical biopsy technology for molecular sensing. We use the diffusion equation to model photon propagation but have a concern about the accuracy of diffusion approximation when the optical sensor is close to a bioluminescent source. We derive formulas to describe photon fluence for point and ball sources and measurement formulas for an idealized optical biopsy probe.

View Article and Find Full Text PDF

Bioluminescence tomography (BLT) is a new molecular imaging mode, which is being actively developed to reveal molecular and cellular signatures as labeled by bioluminescent probes in a living small animal. This technology can help diagnose diseases, evaluate therapies, and facilitate drug development with mouse models. In this paper, we describe in vivo mouse experiments with BLT, and propose the reconstruction procedure of bioluminescent sources from optical data measured on the body surface of the mouse using a modality fusion approach.

View Article and Find Full Text PDF

In this paper, we present a Born-type approximation method for bioluminescence tomography (BLT), which is to reconstruct an internal bioluminescent source from the measured bioluminescent signal on the external surface of a small animal. Based on the diffusion approximation for the photon propagation in biological tissue, this BLT method utilizes the Green function to establish a linear relationship between the measured bioluminescent signal and the internal bioluminescent source distribution. The Green function can be modified to describe a heterogeneous medium with an arbitrary boundary using the Born approximation.

View Article and Find Full Text PDF

We describe the system design of the first bioluminescence tomography (BLT) system for parallel acquisition of multiple bioluminescent views around a mouse in a number of spectral channels simultaneously. The primary component of this BLT system is a novel mirror module and a unique mouse holder. The mirror module consists of a mounting plate and four mirrors with stages.

View Article and Find Full Text PDF

Bioluminescence tomography (BLT) is used to localize and quantify bioluminescent sources in a small living animal. By advancing bioluminescent imaging to a tomographic framework, it helps to diagnose diseases, monitor therapies and facilitate drug development. In this paper, we establish a direct linear relationship between measured surface photon density and an unknown bioluminescence source distribution by using a finite-element method based on the diffusion approximation to the photon propagation in biological tissue.

View Article and Find Full Text PDF