Publications by authors named "Kumar Anubhav Tiwari"

The reliability of the wind turbine blade (WTB) evaluation using a new criterion is presented in the work. Variation of the ultrasonic guided waves (UGW) phase velocity is proposed to be used as a new criterion for defect detection. Based on an intermediate value between the maximum and minimum values, the calculation of the phase velocity threshold is used for defect detection, location and sizing.

View Article and Find Full Text PDF

Dermatoscopy, high-frequency ultrasonography (HFUS) and spectrophotometry are promising quantitative imaging techniques for the investigation and diagnostics of cutaneous melanocytic tumors. In this paper, we propose the hybrid technique and automatic prognostic models by combining the quantitative image parameters of ultrasonic B-scan images, dermatoscopic and spectrophotometric images (melanin, blood and collagen) to increase accuracy in the diagnostics of cutaneous melanoma. The extracted sets of various quantitative parameters and features of dermatoscopic, ultrasonic and spectrometric images were used to develop the four different classification models: logistic regression (LR), linear discriminant analysis (LDA), support vector machine (SVM) and Naive Bayes.

View Article and Find Full Text PDF

Analytical modelling is an efficient approach to estimate the directivity of a transducer generating guided waves in the research field of ultrasonic non-destructive testing of the large and complex structures due to its short processing time as compared to the numerical modelling and experimental techniques. The wave patterns or the amplitude variations along the region of ultrasonic transducer itself depend on its behavior, excitation frequency, and the type of propagating wave mode. Depending on the wave-pattern of a propagating wave mode, the appropriate value of the amplitude correction factor must be multiplied to the amplitudes of the excitation signal for the accurate evaluation of directivity pattern of the ultrasonic transducers generating guided waves in analytical modelling.

View Article and Find Full Text PDF

In this paper, the disbond-type defect presented on glass fiber reinforced plastic material is analyzed by refining the guided Lamb wave signals. A segment of wind turbine blade is considered as a test sample. The low-frequency ultrasonic measurement system is used for the non-destructive testing of the test sample using guided waves.

View Article and Find Full Text PDF

In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications.

View Article and Find Full Text PDF

This work proposes a novel hybrid signal processing technique to extract information on disbond-type defects from a single B-scan in the process of non-destructive testing (NDT) of glass fiber reinforced plastic (GFRP) material using ultrasonic guided waves (GW). The selected GFRP sample has been a segment of wind turbine blade, which possessed an aerodynamic shape. Two disbond type defects having diameters of 15 mm and 25 mm were artificially constructed on its trailing edge.

View Article and Find Full Text PDF