Quantifiable erectile dysfunction (ED) diagnosis involves the monitoring of rigidity and tumescence of the penile shaft during nocturnal penile tumescence (NPT). In this work, we introduce Erectile Dysfunction SENsor (EDSEN), a home-based wearable device for quantitative penile health monitoring based on stretchable microtubular sensing technology. Two types of sensors, the T- and R-sensors, are developed to effectively measure penile tumescence and rigidity, respectively.
View Article and Find Full Text PDFBiosens Bioelectron
March 2014
Present work describes the methylene blue tagged thiolated aptamer-modified gold micro-array based biosensor for specific detection of IFN-γ. The microchips with the microelectrode array were fabricated using standard silicon microfabrication technologies, and modified with methylene blue tagged aptamer using standard gold thiol chemistry. Electrodes were characterized and tested using Cyclic Voltammetric (CV) and Square Wave Voltammetry (SQW) measurements in a standard three-electrode format at room temperature.
View Article and Find Full Text PDFBiosens Bioelectron
January 2011
In this report, we demonstrate a semi-integrated electrical biosensor for the detection of rare circulating tumor cells (CTCs) in blood. The sample was first enriched through a combination of immunomagnetic isolation and size filtration. The integration of both methods provided a high enrichment performance with a recovery rate above 70%, even for very low numbers of cancer cells present in the original sample (10 spiked MCF7 cells in 0.
View Article and Find Full Text PDFLateral patch-clamping has emerged as a chip-based platform for automation of the conventional patch-clamp technique, the 'gold' standard for studying cellular ion channels. The conventional technique, as it relies on skilled-maneuver of glass micropipettes to patch cells, is extremely delicate, low in throughput, and thus cannot be used for primary screening of compounds against ion channels. Direct integration of glass capillaries on silicon provides lateral junctions for automated trapping and patching of cells.
View Article and Find Full Text PDFThis paper presents a novel microfluidic system for rapid label-free detection of endothelial progenitor cells (EPCs) from small volumes of white blood cells samples, to obtain a bedside cardiovascular diagnostic solution. The system was built on a single 1 cm(2) microelectrode array silicon chip, integrated with negative dielectrophoresis for cell trapping, surface immunochemistry for selective cell capture, and fluidics for cell washing and impedance detection. The level of circulating EPC level in blood is a biomarker of clinical interest, linked to the assessment of risk factors in cardiovascular diseases which are a major global concern.
View Article and Find Full Text PDFBiomed Microdevices
December 2009
We describe a self-contained fully-enclosed cartridge for lab-on-a-chip applications where sample and reagents can be applied sequentially as is performed in a heterogeneous immunoassay, or nucleic acid extraction. Both the self-contained and fully-enclosed features of the cartridge are sought to ensure its safe use in the field by unskilled staff. Simplicity in cartridge design and operation is obtained via adopting a valveless concept whereby reagents are stored and used in the form of liquid plugs isolated by air spacers around a fluidic loop.
View Article and Find Full Text PDFWe demonstrate a simple planar peristaltic pump fabricated in poly(dimethylsiloxane) (PDMS) via soft lithography and suitable for microfluidic integration.
View Article and Find Full Text PDFHigh-throughput screening of drug candidates for channelopathies can greatly benefit from an automated patch-clamping assay. Automation of the patch clamping through microfluidics ideally requires on-chip integration of glass capillaries with substantially round cross section. Such round capillaries, if they can only be integrated to connect isolated reservoirs on a substrate surface, will lead to a "lateral" configuration which is simple yet powerful for the patch clamping.
View Article and Find Full Text PDF