The translocation of polymers is omnipresent in inherently crowded biological systems. We investigate the dynamics of polymer translocation through a pore in free and crowded environments using Langevin dynamics simulation. We observed a location-dependent translocation rate of monomers showcasing counterintuitive behavior in stark contrast to the bead velocity along the polymer backbone.
View Article and Find Full Text PDFThe timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) can form liquid-like membraneless organelles, gels, and fibers in cells and in vitro. In this study, we propose a simple model of IDPs as associative polymers in poor solvent and explore the formation of transient liquid droplets and their transformation into solid-like aggregates. We use Langevin dynamics simulations of short polymers with two stickers placed symmetrically along their contour to study the effect of the primary sequence of these polymers on their organization inside condensed droplets.
View Article and Find Full Text PDFWe introduce a simple dynamical rule in which each particle locates a particle that is farthest from it and moves towards it. Repeated application of this algorithm results in the formation of unusual dynamical patterns: during the process of assembly the system self-organizes into slices of low particle density separated by lines of increasingly high particle density along which most particles move. As the process proceeds, pairs of lines meet and merge with each other until a single line remains and particles move along it towards the zone of assembly.
View Article and Find Full Text PDFWhen a multicomponent liquid composed of particles with random interactions is slowly cooled below the freezing temperature, the fluid reorganizes in order to increase (decrease) the number of strong (weak) attractive interactions and solidifies into a structure composed of domains of strongly and of weakly interacting particles. Using Langevin dynamics simulations of a model system we find that the tensile strength, mode of fracture, and thermal stability of such solids differ from those of one-component solids and that these properties can be controlled by the method of preparation.
View Article and Find Full Text PDFWe report a theoretical and experimental study of the aggregation kinetics of oppositely charged nanoparticles. Kinetic Monte Carlo simulations are performed for symmetric, charge-asymmetric and size-asymmetric systems of oppositely charged nanoparticles. Simulation results show that both the weight and number average aggregate size kinetics exhibit power law scaling with different exponents for small and intermediate time of evolution.
View Article and Find Full Text PDFTwo surface analysis techniques, dual polarization interferometry (DPI) and analysis by an electrochemical quartz crystal microbalance with dissipation capability (E-QCM-D), were paired to find the deposition conditions that give the highest and most stable electrocatalytic activity per adsorbed mass of enzyme. Layers were formed by adsorption from buffered solutions of bilirubin oxidase from Myrothecium verrucaria at pH 6.0 to planar surfaces, under high enzyme loading (≥1 mg mL(-1)) for contact periods of up to 2 min.
View Article and Find Full Text PDFPolystyrene thin films were functionalized using a facile two-step chemical protocol involving carbene insertion followed by azo-coupling, permitting the introduction of a range of chemical functional groups, including aniline, hexyl, amine, carboxyl, phenyl, phosphonate diester, and ethylene glycol. X-ray photoelectron spectroscopy (XPS) confirmed the success of the two-step chemical modification with a grafting density of at least 1/10th of the typical loading density (10(14)-10(15)) of a self-assembled monolayer (SAM). In situ, real-time quartz crystal microbalance with dissipation (QCM-D) studies show that the dynamics of binding of bovine serum albumin (BSA) are different at each modified surface.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2009
Recently many important biopolymers have been found to possess intrinsic curvature. Tubulin protofilaments in animal cells, FtsZ filaments in bacteria and double stranded DNA are examples. We examine how intrinsic curvature influences the conformational statistics of such polymers.
View Article and Find Full Text PDF