Publications by authors named "Kuljeet Singh Sandhu"

The rodents of hystricomorpha and sciuromorpha suborders exhibit remarkably lower incidence of cancer. The underlying genetic basis remains obscure. We report a convergent evolutionary split of human 3p21.

View Article and Find Full Text PDF

The mechanisms that guide the clonally stable random mono-allelic expression of autosomal genes remain enigmatic. We show that (1) mono-allelically expressed (MAE) genes are assorted and insulated from bi-allelically expressed (BAE) genes through CTCF-mediated chromatin loops; (2) the cell-type-specific dynamics of mono-allelic expression coincides with the gain and loss of chromatin insulator sites; (3) dosage of MAE genes is more sensitive to the loss of chromatin insulation than that of BAE genes; and (4) inactive alleles of MAE genes are significantly more insulated than active alleles and are de-repressed upon CTCF depletion. This alludes to a topology wherein the inactive alleles of MAE genes are insulated from the spatial interference of transcriptional states from the neighboring bi-allelic domains via CTCF-mediated loops.

View Article and Find Full Text PDF

Background: Proximity ligation based techniques, like Hi-C, involve restriction digestion followed by ligation of formaldehyde cross-linked chromatin. Distinct chromatin states can impact the restriction digestion, and hence the visibility in the contact maps, of engaged loci. Yet, the extent and the potential impact of digestion bias remain obscure and under-appreciated in the literature.

View Article and Find Full Text PDF

Knocking out a chromatin factor often does not alter the transcription of its binding targets. What explains the observed disconnect between binding and effect? We hypothesize that this discrepancy could be associated with the role of chromatin factors in maintaining genetic and epigenetic integrity at promoters, and not necessarily with transcription. Through re-analysis of published datasets, we present several lines of evidence that support our hypothesis and deflate the popular assumptions.

View Article and Find Full Text PDF

The RNA polymerase (pol) III transcribes mostly short, house-keeping genes, which produce stable, non-coding RNAs. The tRNAs genes, highly transcribed by pol III in vivo are known replication fork barriers. One of the transcription factors, the PAF1C (RNA polymerase II associated factor 1 complex) is reported to associate with pol I and pol II and influence their transcription.

View Article and Find Full Text PDF

Conserved noncoding elements (CNEs) have a significant regulatory influence on their neighboring genes. Loss of proximity to CNEs through genomic rearrangements can, therefore, impact the transcriptional states of the cognate genes. Yet, the evolutionary implications of such chromosomal alterations have not been studied.

View Article and Find Full Text PDF

In eukaryotes, genes are nonrandomly organized into short gene-dense regions or "gene-clusters" interspersed by long gene-poor regions. How these gene-clusters have evolved is not entirely clear. Gene duplication may not account for all the gene-clusters since the genes in most of the clusters do not exhibit significant sequence similarity.

View Article and Find Full Text PDF

Despite recent advances, the underlying functional constraints that shape the three-dimensional organization of eukaryotic genome are not entirely clear. Through comprehensive multivariate analyses of genome-wide datasets, we show that cis and trans interactions in yeast genome have significantly distinct functional associations. In particular, (i) the trans interactions are constrained by coordinated replication and co-varying mutation rates of early replicating domains through interactions among early origins, while cis interactions are constrained by coordination of late replication through interactions among late origins; (ii)cis and trans interactions exhibit differential preference for nucleosome occupancy; (iii)cis interactions are also constrained by the essentiality and co-fitness of interacting genes.

View Article and Find Full Text PDF

Despite recent advances, it is yet not clear how intrinsically disordered regions in proteins recognize their targets without any defined structures. Short linear motifs had been proposed to mediate molecular recognition by disordered regions; however, the underlying structural prerequisite remains elusive. Moreover, the role of short linear motifs in DNA recognition has not been studied.

View Article and Find Full Text PDF

Chromatin interactions play important roles in transcription regulation. To better understand the underlying evolutionary and functional constraints of these interactions, we implemented a systems approach to examine RNA polymerase-II-associated chromatin interactions in human cells. We found that 40% of the total genomic elements involved in chromatin interactions converged to a giant, scale-free-like, hierarchical network organized into chromatin communities.

View Article and Find Full Text PDF

The pervasive role of distant chromatin interactions in transcriptional regulation is increasingly becoming evident. There is a possibility that the greater diversity in chromatin interactions of a genomic locus could contribute to stochastic variation in its gene expression. However, this issue has not been addressed.

View Article and Find Full Text PDF

Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions.

View Article and Find Full Text PDF

During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here we review the links between disordered proteins and the associated networks, and describe the consequences of local, mesoscopic and global network disorder on changes in protein structure and dynamics. We introduce a new classification of protein networks into 'cumulus-type', i.

View Article and Find Full Text PDF

Eukaryotic genome is, not only linearly but also spatially, organized into non-random architecture. Though the linear organization of genes and their epigenetic descriptors are well characterized, the relevance of their spatial organization is beginning to unfold only recently. It is increasingly being recognized that physical interactions among distant genomic elements could serve as an important mean to eukaryotic genome regulation.

View Article and Find Full Text PDF

Background: Sexual dimorphism in brain gene expression has been recognized in several animal species. However, the relevant regulatory mechanisms remain poorly understood. To investigate whether sex-biased gene expression in mammalian brain is globally regulated or locally regulated in diverse brain structures, and to study the genomic organisation of brain-expressed sex-biased genes, we performed a large scale gene expression analysis of distinct brain regions in adult male and female mice.

View Article and Find Full Text PDF

Genomically imprinted genes show parentally fixed mono-allelic expression and are important for the mammalian development. Dysregulation of genomic imprinting leads to several complex pathological conditions. Though the genetic and epigenetic regulation of imprinted genes has been well studied, their protein aspects are largely ignored.

View Article and Find Full Text PDF

Recent observations highlight that the mammalian genome extensively communicates with itself via long-range chromatin interactions. The causal link between such chromatin cross-talk and epigenetic states is, however, poorly understood. We identify here a network of physically juxtaposed regions from the entire genome with the common denominator of being genomically imprinted.

View Article and Find Full Text PDF

Codon optimization is a generic technique to achieve optimum expression of a foreign gene in the host's cell system. Selection of optimum codons depends on codon usage of the host genome and the presence of several desirable and undesirable sequence motifs. Searching these motifs in all possible combinations of the codons increases the search space exponentially with respect to sequence length.

View Article and Find Full Text PDF

Chromatin remodelers, a group of proteins involved in nucleosome re-positioning and modification, have extensive range of interacting partners. They form multimeric complexes and interact with modified histones, transcription, splicing, and replication factors, DNA, RNA, and the factors related to the maintenance of chromosome structure. Such diverse range of interactions is hard to explain with the presumed highly structured form of the protein.

View Article and Find Full Text PDF

Spirulina platensis, a cyanobacterium whose N-metabolic pathway is similar to that of higher plants like rice (Oryza sativa), produces tenfold more protein, indicating a higher capacity for nitrate utilization/removal. Our in vitro analyses in crude extracts revealed that this can be attributed, at least in part, to the higher specific activities (3-6 fold) and half lives (1.2-4.

View Article and Find Full Text PDF

Motifs that are evolutionarily conserved in proteins are crucial to their structure and function. In one of our earlier studies, we demonstrated that the conserved motifs occurring invariantly across several organisms could act as structural determinants of the proteins. We observed the abundance of glycyl residues in these invariantly conserved motifs.

View Article and Find Full Text PDF

Structural transitions are important for the stability and function of proteins, but these phenomena are poorly understood. An extensive analysis of Protein Data Bank entries reveals 103 regions in proteins with a tendency to transform from helical to nonhelical conformation and vice versa. We find that these dynamic helices, unlike other helices, are depleted in hydrophobic residues.

View Article and Find Full Text PDF

We have carried out in silico analysis of upstream regions of 23,034 genes from the human genome for sequence motifs, which can potentially affect nucleosome positioning. Nucleosome exclusion elements (NEE) occur in 12% of the genes while less than 1% contain nucleosome positioning elements (NPE). NEE are significantly higher in 5' regions of certain categories of genes, namely, genes with active promoters, genes localised to gene-rich chromosomes 16, 17 and 19, genes having significantly higher expression levels and higher levels of occupancy of general transcription machinery proteins.

View Article and Find Full Text PDF

Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners.

View Article and Find Full Text PDF

PEST sequences are one of the major motifs that serve as signal for the protein degradation and are also involved in various cellular processes such as phosphorylation and protein-protein interaction. In our earlier study, we found that these motifs contribute largely to eukaryotic protein disorder. This observation led us to evaluate their conformational variability in the nonredundant Protein Data Bank (PDB) structures.

View Article and Find Full Text PDF