Publications by authors named "Kulbachinskiy A"

Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.

View Article and Find Full Text PDF
Article Synopsis
  • Argonaute proteins are versatile nucleases present in all life forms, with eukaryotic versions involved in gene regulation and defense against viruses, while their prokaryotic counterparts help bacteria fend off invading genetic material.
  • Recent research indicates that prokaryotic argonautes (pAgos) may protect bacteria from the antibiotic ciprofloxacin, suggesting a potential role in DNA replication and repair.
  • The authors propose models for how pAgos could contribute to ciprofloxacin resistance, including assisting with DNA decatenation, processing DNA repair intermediates, or triggering the SOS response that enhances overall DNA repair and antibiotic resistance.
View Article and Find Full Text PDF

Argonaute nucleases use small nucleic acid guides to recognize and degrade complementary nucleic acid targets. Most prokaryotic Argonautes (pAgos) recognize DNA targets and may play a role in cell immunity against invader genetic elements. We have recently described two related groups of pAgo nucleases that have distinct specificity for DNA guides and RNA targets (DNA > RNA pAgos).

View Article and Find Full Text PDF

During transcription initiation, the holoenzyme of bacterial RNA polymerase (RNAP) specifically recognizes promoters using a dedicated σ factor. During transcription elongation, the core enzyme of RNAP interacts with nucleic acids mainly nonspecifically, by stably locking the DNA template and RNA transcript inside the main cleft. Here, we present a synthetic DNA aptamer that is specifically recognized by both core and holoenzyme RNAPs from extremophilic bacteria of the Deinococcus-Thermus phylum.

View Article and Find Full Text PDF

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on 6S RNA, a small non-coding RNA that mimics DNA promoters, effectively binding to bacterial RNA polymerase (RNAP) to inhibit gene transcription, particularly during stationary growth or starvation phases.
  • - The synthesis of short product RNA (pRNA) from the 6S RNA template is influenced by specific interactions between the 6S RNA and RNAP, as well as secondary channel factors, which modulate the transcription process.
  • - Researchers utilized a molecular beacon assay to track the release of 6S RNA during pRNA synthesis, revealing that mutations in specific RNAP regions affect the kinetics of 6S RNA release and suggesting a regulatory role of universal transcription factors in both pRNA synthesis and
View Article and Find Full Text PDF

Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action.

View Article and Find Full Text PDF

Many prokaryotic Argonaute (pAgo) proteins act as programmable nucleases that use small guide DNAs for recognition and cleavage of complementary target DNA. Recent studies suggested that pAgos participate in cell defense against invader DNA and may also be involved in other genetic processes, including DNA replication and repair. The ability of pAgos to recognize specific targets potentially make them an invaluable tool for DNA manipulations.

View Article and Find Full Text PDF

Emerging and re-emerging viruses periodically cause outbreaks and epidemics around the world, which ultimately lead to global events such as the COVID-19 pandemic. Thus, the urgent need for new antiviral drugs is obvious. Over more than a century of antiviral development, nucleoside analogs have proven to be promising agents against diversified DNA and RNA viruses.

View Article and Find Full Text PDF

Prokaryotic Argonaute (pAgo) proteins are guide-dependent nucleases that function in host defense against invaders. Recently, it was shown that TtAgo from Thermus thermophilus also participates in the completion of DNA replication by decatenating chromosomal DNA. Here, we show that two pAgos from cyanobacteria Synechococcus elongatus (SeAgo) and Limnothrix rosea (LrAgo) are active in heterologous Escherichia coli and aid cell division in the presence of the gyrase inhibitor ciprofloxacin, depending on the host double-strand break repair machinery.

View Article and Find Full Text PDF

Prokaryotic Argonaute proteins (pAgos) are homologs of eukaryotic Argonautes (eAgos) and are also thought to play a role in cell defense against invaders. However, pAgos are much more diverse than eAgos and little is known about their functional activities and target specificities in vivo. Here, we describe five pAgos from mesophilic bacteria that act as programmable DNA endonucleases and analyze their ability to target chromosomal and invader DNA.

View Article and Find Full Text PDF

Prokaryotic Argonautes (pAgos) are programmable nucleases involved in cell defense against invading DNA. In vitro, pAgos can bind small single-stranded guide DNAs to recognize and cleave complementary DNA. In vivo, pAgos preferentially target plasmids, phages and multicopy genetic elements.

View Article and Find Full Text PDF

The SARS-CoV-2 betacoronavirus pandemic has claimed more than 6.5 million lives and, despite the development and use of COVID-19 vaccines, remains a major global public health problem. The development of specific drugs for the treatment of this disease remains a very urgent task.

View Article and Find Full Text PDF

Prokaryotic Argonaute (pAgo) proteins are programmable nucleases with great promise in genetic engineering and biotechnology. Previous studies identified several DNA-targeting pAgo nucleases from mesophilic and thermophilic prokaryotic species that are active in various temperature ranges. However, the effects of temperature on the specificity of target recognition and cleavage by pAgos have not been studied.

View Article and Find Full Text PDF

Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date.

View Article and Find Full Text PDF

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12.

View Article and Find Full Text PDF

Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date.

View Article and Find Full Text PDF

Argonaute proteins are programmable nucleases that have defense and regulatory functions in both eukaryotes and prokaryotes. All known prokaryotic Argonautes (pAgos) characterized so far act on DNA targets. Here, we describe a new class of pAgos that uniquely use DNA guides to process RNA targets.

View Article and Find Full Text PDF

RNA-dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS-CoV-2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS-CoV-2 RdRp (the nsp12-nsp7-nsp8 complex) on synthetic primer-templates of various structures, including substrates with mismatched primers or template RNA modifications.

View Article and Find Full Text PDF

Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo∗) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage.

View Article and Find Full Text PDF

The X family polymerases (PolXs) are specialized DNA polymerases that are found in all domains of life. While the main representatives of eukaryotic PolXs, which have dedicated functions in DNA repair, were studied in much detail, the functions and diversity of prokaryotic PolXs have remained largely unexplored. Here, by combining a comprehensive bioinformatic analysis of prokaryotic PolXs and biochemical experiments involving selected recombinant enzymes, we reveal a previously unrecognized group of PolXs that seem to be lacking DNA polymerase activity.

View Article and Find Full Text PDF

Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription.

View Article and Find Full Text PDF
Article Synopsis
  • Argonaute proteins are nucleases found in both eukaryotes and prokaryotes that defend against invading genetic elements, but most prokaryotic argonautes only target DNA, which limits their applications.
  • A unique prokaryotic argonaute, KmAgo from Kurthia massiliensis, can be programmed to cleave both DNA and RNA targets using 16-20 nt long 5'-phosphorylated guide molecules without strict sequence preferences.
  • The efficiency of KmAgo's target cleavage varies with mismatches and is influenced by target structure, allowing for potential applications in specific nucleic acid detection and cleavage.
View Article and Find Full Text PDF

The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.

View Article and Find Full Text PDF