Publications by authors named "Kukjin Kang"

We study the Bayesian process to estimate the features of the environment. We focus on two aspects of the Bayesian process: how estimation error depends on the prior distribution of features and how the prior distribution can be learned from experience. The accuracy of the perception is underestimated when each feature of the environment is considered independently because many different features of the environment are usually highly correlated and the estimation error greatly depends on the correlations.

View Article and Find Full Text PDF

This paper is about how cortical recurrent interactions in primary visual cortex (V1) together with feedback from extrastriate cortex can account for spectral peaks in the V1 local field potential (LFP). Recent studies showed that visual stimulation enhances the γ-band (25-90 Hz) of the LFP power spectrum in macaque V1. The height and location of the γ-band peak in the LFP spectrum were correlated with visual stimulus size.

View Article and Find Full Text PDF

We study the discrimination capability of spike time sequences using the Chernoff distance as a metric. We assume that spike sequences are generated by renewal processes and study how the Chernoff distance depends on the shape of interspike interval (ISI) distribution. First, we consider a lower bound to the Chernoff distance because it has a simple closed form.

View Article and Find Full Text PDF

Neurons in macaque primary visual cortex (V1) show a diversity of orientation tuning properties, exhibiting a broad distribution of tuning width, baseline activity, peak response, and circular variance (CV). Here, we studied how the different tuning features affect the performance of these cells in discriminating between stimuli with different orientations. Previous studies of the orientation discrimination power of neurons in V1 focused on resolving two nearby orientations close to the psychophysical threshold of orientation discrimination.

View Article and Find Full Text PDF

Many models of cortical function assume that local lateral connections are specific with respect to the preferred features of the interacting cells and that they are organized in a Mexican-hat pattern with strong "center" excitation flanked by strong "surround" inhibition. However, anatomical data on primary visual cortex indicate that the local connections are isotropic and that inhibition has a shorter range than excitation. We address this issue in an analytical study of a neuronal network model of the local cortical circuit in primary visual cortex.

View Article and Find Full Text PDF