Publications by authors named "Kukis D"

Purpose: Exploring synaptic density changes during brain growth is crucial to understanding brain development. Previous studies in nonhuman primates report a rapid increase in synapse number between the late gestational period and the early neonatal period, such that synaptic density approaches adult levels by birth. Prenatal synaptic development may have an enduring impact on postnatal brain development, but precisely how synaptic density changes in utero are unknown because current methods to quantify synaptic density are invasive and require post-mortem brain tissue.

View Article and Find Full Text PDF

Women exposed to a variety of viral and bacterial infections during pregnancy have an increased risk of giving birth to a child with autism, schizophrenia or other neurodevelopmental disorders. Preclinical maternal immune activation (MIA) models are powerful translational tools to investigate mechanisms underlying epidemiological links between infection during pregnancy and offspring neurodevelopmental disorders. Our previous studies documenting the emergence of aberrant behavior in rhesus monkey offspring born to MIA-treated dams extends the rodent MIA model into a species more closely related to humans.

View Article and Find Full Text PDF

The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood.

View Article and Find Full Text PDF

Lymphatic dysfunction is associated with the progression of many cardiovascular disorders due to their role in maintaining tissue fluid homeostasis. Promoting new lymphatic vessels (lymphangiogenesis) is a promising strategy to reverse these cardiovascular disorders via restoring lymphatic function. Vascular endothelial growth factor (VEGF) members VEGF-C and VEGF-D are both potent candidates for stimulating lymphangiogenesis, though maintaining spatial and temporal control of these factors represents a challenge to developing efficient therapeutic lymphangiogenic applications.

View Article and Find Full Text PDF

Pair bonding leads to increases in dopamine D1 receptor (D1R) binding in the nucleus accumbens of monogamous prairie voles. In the current study, we hypothesized that there is similar up-regulation of D1R in a monogamous primate, the titi monkey (Callicebus cupreus). Receptor binding of the D1R antagonist [ C]-SCH23390 was measured in male titi monkeys using PET scans before and after pairing with a female.

View Article and Find Full Text PDF

Background: Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can trigger convulsions that progress to life-threatening status epilepticus. Survivors face long-term morbidity including mild-to-severe decline in memory. It is posited that neuroinflammation plays a key role in the pathogenesis of OP-induced neuropsychiatric deficits.

View Article and Find Full Text PDF

The neuropeptide oxytocin is part of a neuroendocrine system that has physiological effects ranging from ensuring uterine myometrial contractions at parturition and post-partum mammary gland milk ejection to the modulation of neural control of social relationships. This initial study was performed to investigate the potential use of positron emission tomography (PET) for localizing oxytocin receptors in two New World primates. Three biomarkers for PET (1-3) that are known to have high affinity and selectivity for the human oxytocin receptor were investigated in the common marmoset (Callithrix jacchus) via PET imaging.

View Article and Find Full Text PDF

Multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise towards personalized nanomedicine. However, attaining consistently high performance of these functions in vivo in one single nanoconstruct remains extremely challenging. Here we demonstrate the use of one single polymer to develop a smart 'all-in-one' nanoporphyrin platform that conveniently integrates a broad range of clinically relevant functions.

View Article and Find Full Text PDF

These studies focused on a new radiolabeling technique with copper ((64)Cu) and zirconium ((89)Zr) for positron emission tomography (PET) imaging using a CD45 antibody. Synthesis of (64)Cu-CD45 and (89)Zr-CD45 immunoconjugates was performed and the evaluation of the potential toxicity of radiolabeling human peripheral blood stem cells (hPBSC) was assessed in vitro (viability, population doubling times, colony forming units). hPBSC viability was maintained as the dose of (64)Cu-TETA-CD45 increased from 0 (92%) to 160 µCi/mL (76%, p>0.

View Article and Find Full Text PDF

Purpose: Oxidized low-density lipoprotein (LDL) plays an essential role in the pathogenesis of atherosclerosis. The purpose of this study was to characterize the pharmacokinetics (PK) of a human recombinant IgG1 antibody to oxidized LDL (anti-oxLDL) in cynomolgus monkey. The tissue biodistribution of anti-oxLDL was also investigated using positron emission tomography (PET) imaging.

View Article and Find Full Text PDF

Theranostic agents are critical for improving the diagnosis and treatment of non-Hodgkin Lymphoma (NHL). The peptidomimetic LLP2A is a novel peptide receptor radiotherapy candidate for treating NHL that expresses the activated α4β1 integrin. Tumor-bearing dogs are an excellent model of human NHL with similar clinical characteristics, behavior, and compressed clinical course.

View Article and Find Full Text PDF

We describe the synthesis and development of new reactive DOTA-metal complexes for covalently targeting engineered receptors in vivo, which have superior tumor uptake and clearance properties for biomedical applications. These probes are found to clear efficiently through the kidneys and minimally through other routes, but bind persistently in the tumor target. We also explore the new technique of Cerenkov luminescence imaging to optically monitor radiolabeled probe distribution and kinetics in vivo.

View Article and Find Full Text PDF

Significant upregulation of the integrin alpha(v)beta(6) has been described as a prognostic indicator in several cancers, making it an attractive target for tumor imaging. This study compares variants of a PEGylated alpha(v)beta(6)-targeting peptide, bearing either an [(18)F]fluorobenzoyl prosthetic group ([(18)F]FBA-PEG-A20FMDV2) or different [(64)Cu]copper chelators (DOTA-PEG-A20FMDV2, CB-TE2A-PEG-A20FMDV2). The compounds were evaluated in vitro by enzyme-linked immunosorbent assay (against the integrin alpha(v)beta(6) and the closely related integrin alpha(v)beta(3)) and by cell labeling (alpha(v)beta(6)-positive DX3purobeta6/alpha(v)beta(6)-negative DX3puro) and in vivo using micro-positron emission tomography in a mouse model bearing paired DX3purobeta6/Dx3puro xenografts.

View Article and Find Full Text PDF

Radiolabeling of liposomes with 64Cu (t(1/2)=12.7 h) is attractive for molecular imaging and monitoring drug delivery. A simple chelation procedure, performed at a low temperature and under mild conditions, is required to radiolabel preloaded liposomes without lipid hydrolysis or the release of the encapsulated contents.

View Article and Find Full Text PDF

Purpose: The aim of the study is to compare the tumor-specific targeting, pharmacokinetics, and biodistribution of (64)Cu-DOTA-HB22.7 when administered to xenograft-bearing mice intravenously (IV), intraperitoneally (IP), and subcutaneously (SQ).

Procedures: Mice bearing human non-Hodgkin's lymphoma (NHL) xenografts were injected IV, IP, or SQ with (64)Cu-DOTA-HB22.

View Article and Find Full Text PDF

Complementary imaging modalities provide more information than either method alone can yield and we have developed a dual-mode imaging probe for combined magnetic resonance (MR) and positron emission tomography (PET) imaging. We have developed dual-mode PET/MRI active probes targeted to vascular inflammation and present synthesis of (1) an aliphatic amine polystyrene bead and (2) a novel superparamagnetic iron oxide nanoparticle targeted to macrophages that were both coupled to positron-emitting copper-64 isotopes. The amine groups of the polystyrene beads were directly conjugated with an amine-reactive form (isothiocyanate) of aza-macrocycle 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA).

View Article and Find Full Text PDF

Purpose: Although radioimmunotherapy alone is effective in lymphoma, its application to solid tumors will likely require a combined modality approach. In these phase I studies, paclitaxel was combined with radioimmunotherapy in patients with metastatic hormone-refractory prostate cancer or advanced breast cancer.

Experimental Design: Patients were imaged with indium-111 (111In)-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-peptide-m170.

View Article and Find Full Text PDF

Purpose: Radioimmunotherapy delivered by radiometal immunoconjugates and followed by marrow support is dose limited by deposition of radioactivity in normal organs. To increase elimination of radioactivity from the liver and body and, thus, minimize hepatic radiation dose, a peptide having a specific cathepsin B cleavage site was placed between the radiometal chelate DOTA (1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid) and the monoclonal antibody m170, and the comparative pharmacokinetics was evaluated in prostate cancer patients.

Experimental Design: (111)In-DOTA-2IT-m170 and (111)In-DOTA-peptide-(GGGF)-m170, representing the same monoclonal antibody and chelate with and without the cleavable linkage, were studied in comparable groups of prostate cancer patients (17 with In-2IT-BAD-m170 and 8 with In-DOTA-peptide-m170).

View Article and Find Full Text PDF

CD22 is a membrane glycophosphoprotein found on nearly all healthy B-lymphocytes and most B-cell lymphomas. Recent in vitro studies have identified several anti-CD22 monoclonal antibodies (mAbs) that block the interaction of CD22 with its ligand. One of these mAbs, HB22.

View Article and Find Full Text PDF

Background: Single-agent radioimmunotherapy (RIT), although potentially useful for slowing solid tumor growth, has not been effective in curing aggressive tumors, such as breast cancer. These cancers typically have p53 mutations and are less susceptible to apoptosis, the apparent mechanism of cell death from low dose-rate radiation. Thus, synergistic or combined modality radioimmunotherapy (CMRIT) agents are needed to increase radiosensitivity for therapeutic enhancement without additive toxicity.

View Article and Find Full Text PDF

Radioimmunotherapy of cancer utilizes anti-tumor antibodies or antibody fragments conjugated to radionuclides to deliver radiation selectively to tumors. However, radiolabeled proteins deposit radioactivity in normal organs that metabolize or conserve proteins and peptides, primarily liver and kidneys. To accelerate the clearance of radioactivity from normal tissues, linkers between the antibody or antibody fragment and the radioactive moiety have been designed for cleavage in the liver and kidneys, to liberate low molecular weight radioactive species for rapid excretion.

View Article and Find Full Text PDF

Background: Therapy for prostate cancer in the PC3 tumor-nude mouse model with 90yttrium-(90Y)-DOTA-peptide-ChL6 (5.55 MBq;150 microCi) has resulted in durable responses. To make radioimmunotherapy (RIT) more effective, the radiation-enhancing drugs Taxol (paclitaxel) and Taxotere (docetaxel) were tested for synergy with 90Y-DOTA-peptide-ChL6.

View Article and Find Full Text PDF

Radioimmunotherapy using radiolabeled monoclonal antibodies against tumor-associated antigens has been efficacious, particularly in the treatment of radiosensitive malignancies such as lymphoma. Antilymphoma monoclonal antibody Lym-1, labeled with copper-67 ((67)Cu), iodine-131 ((131)I), or yttrium-90 ((90)Y), has been effective salvage therapy for patients with non-Hodgkin's lymphoma. Although (131)I has had the dominant role in radioimmunotherapy thus far, several properties of radiometals are preferable.

View Article and Find Full Text PDF

Unlabelled: Radiometal-labeled monoclonal antibodies are retained longer in tumors than iodinated antibodies, leading to their increased use for radioimmunotherapy. Dissociation of radioiodine from the antibody during metabolism has been documented. We now report metabolites in the plasma of lymphoma patients given 111In- and 90Y-2-iminothiolane-2-[p-(bromoacetamido)benzyl]-1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid-Lym-1 (111In/90Y-2IT-BAD-Lym-1).

View Article and Find Full Text PDF

Purpose: Over 31,000 Americans die of androgen-independent metastatic prostate cancer each year. New strategies that do not involve hormonal manipulation but instead recognize the biochemical and molecular characteristics of prostate cancer are needed. Radioimmunotherapy (RIT) uses a tumor-specific monoclonal antibody to deliver systemic, targeted radiation to cancer.

View Article and Find Full Text PDF