Publications by authors named "Kujawinski E"

Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.

View Article and Find Full Text PDF

Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups.

View Article and Find Full Text PDF

Extracellular chemical cues constitute much of the language of life among marine organisms, from microbes to mammals. Changes in this chemical pool serve as invisible signals of overall ecosystem health and disruption to this finely tuned equilibrium. In coral reefs, the scope and magnitude of the chemicals involved in maintaining reef equilibria are largely unknown.

View Article and Find Full Text PDF

Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate.

View Article and Find Full Text PDF

Benthic organisms are the architectural framework supporting coral reef ecosystems, but their community composition has recently shifted on many reefs. Little is known about the metabolites released from these benthic organisms and how compositional shifts may influence other reef life, including prolific microorganisms. To investigate the metabolite composition of benthic exudates and their ecological significance for reef microbial communities, we harvested exudates from six species of Caribbean benthic organisms including stony corals, octocorals, and an invasive encrusting alga, and subjected these exudates to untargeted and targeted metabolomics approaches using liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Approximately half of the annual carbon fixation on Earth occurs in the surface ocean through the photosynthetic activities of phytoplankton such as the ubiquitous picocyanobacterium . Ecologically distinct subpopulations (or ecotypes) of are central conduits of organic substrates into the ocean microbiome, thus playing important roles in surface ocean production. We measured the chemical profile of three cultured ecotype strains, observing striking differences among them that have implications for the likely chemical impact of subpopulations on their surroundings in the wild.

View Article and Find Full Text PDF

As coral reef ecosystems experience unprecedented change, effective monitoring of reef features supports management, conservation, and intervention efforts. Omic techniques show promise in quantifying key components of reef ecosystems including dissolved metabolites and microorganisms that may serve as invisible sensors for reef ecosystem dynamics. Dissolved metabolites are released by reef organisms and transferred among microorganisms, acting as chemical currencies and contributing to nutrient cycling and signaling on reefs.

View Article and Find Full Text PDF

Marine picocyanobacteria and , the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin.

View Article and Find Full Text PDF

One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.

View Article and Find Full Text PDF

Deep convective mixing of dissolved and suspended organic matter from the surface to depth can represent an important export pathway of the biological carbon pump. The seasonally oligotrophic Sargasso Sea experiences annual winter convective mixing to as deep as 300 m, providing a unique model system to examine dissolved organic matter (DOM) export and its subsequent compositional transformation by microbial oxidation. We analyzed biogeochemical and microbial parameters collected from the northwestern Sargasso Sea, including bulk dissolved organic carbon (DOC), total dissolved amino acids (TDAA), dissolved metabolites, bacterial abundance and production, and bacterial community structure, to assess the fate and compositional transformation of DOM by microbes on a seasonal time-scale in 2016-2017.

View Article and Find Full Text PDF

Analytical techniques for chemical analysis of oil, oil photochemical and biological transformation products, and dispersants and their biodegradation products benefited significantly from research following the 2010 (DWH) disaster. Crude oil and weathered-oil matrix reference materials were developed based on the Macondo well oil and characterized for polycyclic aromatic hydrocarbons, hopanes, and steranes for use to assure and improve the quality of analytical measurements in oil spill research. Advanced gas chromatography (GC) techniques such as comprehensive two-dimensional GC (GC × GC), pyrolysis GC with mass spectrometry (MS), and GC with tandem MS (GC-MS/MS) provide a greater understanding at the molecular level of composition and complexity of oil and weathering changes.

View Article and Find Full Text PDF

Pharmaceutical compounds ingested by humans are metabolized and excreted in urine and feces. These metabolites can be quantified in wastewater networks using wastewater-based epidemiology (WBE) methods. Standard WBE methods focus on samples collected at wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

Dissolved metabolites serve as nutrition, energy, and chemical signals for microbial systems. However, the full scope and magnitude of these processes in marine systems are unknown, largely due to insufficient methods, including poor extraction of small, polar compounds using common solid-phase extraction resins. Here, we utilized pre-extraction derivatization and ultrahigh performance liquid chromatography electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) to detect and quantify targeted dissolved metabolites in seawater and saline culture media.

View Article and Find Full Text PDF

The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net drawdown of exometabolites, the latter detected with mass spectrometry and nuclear magnetic resonance using novel sample preparation approaches.

View Article and Find Full Text PDF

It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell.

View Article and Find Full Text PDF

Untargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-spectral peaks across samples. This step requires selection of dataset-specific parameters, as erroneous parameters can result in noise inflation.

View Article and Find Full Text PDF

Metabolomics is a tool with immense potential for providing insight into the impact of biological processes on the environment. Here, we used metabolomics methods to characterize intracellular metabolites within marine microorganisms during a manipulation experiment that was designed to test the impact of two sources of microbial mortality, protozoan grazing and viral lysis. Intracellular metabolites were analyzed with targeted and untargeted mass spectrometry methods.

View Article and Find Full Text PDF

It has been hypothesized that the abundant heterotrophic ocean bacterioplankton in the SAR202 clade of the phylum evolved specialized metabolisms for the oxidation of organic compounds that are resistant to microbial degradation via common metabolic pathways. Expansions of paralogous enzymes were reported and implicated in hypothetical metabolism involving monooxygenase and dioxygenase enzymes. In the proposed metabolic schemes, the paralogs serve the purpose of diversifying the range of organic molecules that cells can utilize.

View Article and Find Full Text PDF

Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary.

View Article and Find Full Text PDF

Chemoautotrophic bacteria belonging to the genus Sulfurimonas in the class Campylobacteria are widespread in many marine environments characterized by redox interfaces, yet little is known about their physiological adaptations to different environmental conditions. Here, we used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in a targeted metabolomics approach to study the adaptations of Sulfurimonas denitrificans to varying salt concentrations that are found in its natural habitat of tidal mudflats. Proline was identified as one of the most abundant internal metabolites and its concentration showed a strong positive correlation with ionic strength, suggesting that it acts as an important osmolyte in S.

View Article and Find Full Text PDF

Ultrahigh resolution mass spectrometry, such as Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work, we describe software Formularity with a user-friendly interface for CIA function and newly developed search function Isotopic Pattern Algorithm (IPA).

View Article and Find Full Text PDF

Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM) from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water), in samples exiting the sponge (exhalent seawater), and in samples collected just outside the reef area (off reef seawater).

View Article and Find Full Text PDF

Rationale: Marine dissolved organic matter (DOM) has long been recognized as a large and dynamic component of the global carbon cycle. Yet, DOM is chemically varied and complex and these attributes present challenges to researchers interested in addressing questions about the role of DOM in global biogeochemical cycles.

Methods: Organic matter extracts from seawater were analyzed by direct infusion with electrospray ionization into a Fourier transform ion cyclotron resonance mass spectrometer.

View Article and Find Full Text PDF