Publications by authors named "Kuixing Ding"

Rechargeable aqueous zinc-ion batteries (AZIBs) are among the most promising candidates for next-generation energy-storage devices. However, the large voltage polarisation and infamous dendrite growth hinder the practical application of AZIBs owing to their complex interfacial electrochemical environment. In this study, a hydrophobic zinc chelate-capped nano-silver (HZC-Ag) dual interphase is fabricated on the zinc anode surface using an emulsion-replacement strategy.

View Article and Find Full Text PDF

Efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for rechargeable Zn-air batteries (ZABs). Herein, an oxygen-respirable sponge-like Co@C-O-Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy. The aerophilic triphase interface of Co@C-O-Cs cathode efficiently boosts oxygen diffusion and transfer.

View Article and Find Full Text PDF

To gain superior signal-enhanced performance, metal nanocrystals serving as building blocks can be collectively assembled into a hierarchically ordered structure for creating multiple hotspots. However, the collaborative assembly of anisotropic crystals to form a hotspot-rich structure remains a challenging task. In this study, controllable shear was introduced to a soft liquid-liquid interface to provide a unique environment for the snowball assembly of silver pompon architectures (Ag-PAs).

View Article and Find Full Text PDF

The rapid and selective identification of heavy metal ions is crucial for environmental water safety. In this study, a novel surface-enhanced Raman scattering (SERS)-active catcher was designed for Cu(II) detection using a hydrophobic hydroxyoxime-mediated plasmonic silver membrane (HOX@Ag-PVDF). Uniformly dispersed Ag nanoparticles (ca.

View Article and Find Full Text PDF

The transition metal-based catalysts have great potential to boost the electrocatalytic reactions due to their flexible electronic configuration and low cost. This work developed a facile emulsion aggregation strategy to synthesize coral-like carbon-wrapped NiCo alloy (CoNi/rGO) with high oxygen evolution reaction (OER) activity. The effect of alloy composition and GO content on the OER activity was evaluated in the 1 mol L KOH solution.

View Article and Find Full Text PDF