Metal ion intercalation into Group VI transition metal dichalcogenides enables control over their carrier transport properties. In this work, we demonstrate a low-temperature, solution-phase synthetic method to intercalate cationic vanadium complexes into bulk WS. Vanadium intercalation expands the interlayer spacing from 6.
View Article and Find Full Text PDFElectronic doping of transition-metal oxides (TMOs) is typically accomplished through the synthesis of nonstoichiometric oxide compositions and the subsequent ionization of intrinsic lattice defects. As a result, ambipolar doping of wide-band-gap TMOs is difficult to achieve because the formation energies and stabilities of vacancy and interstitial defects vary widely as a function of the oxide composition and crystal structure. The facile formation of lattice defects for one carrier type is frequently paired with the high-energy and unstable generation of defects required for the opposite carrier polarity.
View Article and Find Full Text PDFAmbipolar doping of metal oxides is critical toward broadening the functionality of semiconducting oxides in electronic devices. Most metal oxides, however, show a strong preference for a single doping polarity due to the intrinsic stability of particular defects in an oxide lattice. In this work, we demonstrate that layered metal hydroxide nanomaterials of Co and Ni, which are intrinsically p-doped in their anhydrous rock salt form, can be n-doped using -BuLi as a strong electron donor.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2020
Developing safe and efficient delivery systems for therapeutic biomacromolecules is a long-standing challenge. Herein, we report a newly developed combinatorial library of cholesteryl-based disulfide bond-containing biodegradable cationic lipidoid nanoparticles. We have identified a subset of this library which is effective for protein and mRNA delivery in vitro and in vivo.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
March 2021
Granular media is the second-most-manipulated substance on Earth, second only to water. However, simulation of granular media is still challenging due to the complexity of granular materials and the large number of discrete solid particles. As we know, dry granular materials could form a hybrid state between a fluid and a solid, therefore we propose a two-layer model and divide the simulation domain into a dilute layer, where granules can move freely as a fluid, and a dense layer, where granules act more like a solid.
View Article and Find Full Text PDF