Nisin is a 34 residue long peptide belonging to the group A lantibiotics with antimicrobial activity against Gram-positive bacteria. The antimicrobial activity is based on pore formation in the cytoplasmic membrane of target organisms. The mechanism which leads to pore formation remains to be clarified.
View Article and Find Full Text PDFThe antimicrobial membrane-interacting polypeptide nisin is a prominent member of the lantibiotic family, the members of which contain thioether-bridged residues called lanthionines. To gain insight into the complex biosynthesis and the structure/function relationship of lantibiotics, the final intermediate in the biosynthesis of nisin A was studied by nuclear magnetic resonance spectroscopy. In aqueous solution the leader peptide part of this precursor adopts predominantly a random coil structure, as does the synthetic leader peptide itself.
View Article and Find Full Text PDFA transferable dual-plasmid inducible gene expression system for use in lactic acid bacteria that is based on the autoregulatory properties of the antimicrobial peptide nisin produced by Lactococcus lactis was developed. Introduction of the two plasmids allowed nisin-inducible gene expression in Lactococcus lactis MG1363, Leuconostoc lactis NZ6091, and Lactobacillus helveticus CNRZ32. Typically, the beta-glucuronidase activity (used as a reporter in this study) remained below the detection limits under noninducing conditions and could be raised to high levels, by addition of subinhibitory amounts of nisin to the growth medium, while exhibiting a linear dose-response relationship.
View Article and Find Full Text PDFCurr Opin Biotechnol
October 1997
Recent years have seen an increase in the development of gene expression systems for industrial Gram-positive bacteria with low guanine and cytosine content that belong to the genera Bacillus, Clostridium, Lactococcus, Lactobacillus, Staphylococcus and Streptococcus. In particular, considerable advances have been made in the construction of inducible gene expression systems based on the capacity of these bacteria to utilize specific sugars or to secrete autoinducing peptides that are involved in quorum sensing. These controlled expression systems allow for present and future exploitation of these bacteria as cell factories in medical, agricultural, and food biotechnology.
View Article and Find Full Text PDFMutational, nucleotide sequence, and transcriptional analyses of a 10-kb fragment (carnobacteriocin locus) from the 61-kb plasmid of Carnobacterium piscicola LV17B demonstrated the presence of two gene clusters (cbnXY and cbnSKRTD) upstream of the previously sequenced carnobacteriocin B2 structural and immunity genes (cbnB2 and cbiB2). Deduced products of cbnK and cbnR have sequence similarity to proteins of Agr-type two-component signal transduction systems, and those of cbnT and cbnD have sequence similarity to proteins of signal sequence-independent secretion systems. Deduced products of cbnX, cbnY, and cbnS are class II-type bacteriocin precursors with potential leader peptides containing double-glycine cleavage sites.
View Article and Find Full Text PDFAn attractive approach to accelerate cheese ripening is to induce lysis of Lactococcus lactis starter strains for facilitated release of intracellular enzymes involvement in flavor formation. Controlled expression of the lytic genes lytA and lytH, which encode the lysin and the holin proteins of the lactococcal bacteriophage phi US3, respectively, was accomplished by application of a food-grade nisin-inducible expression system. Simultaneous production of lysin and holin is essential to obtain efficient lysis and concomitant release of intracellular enzymes as exemplified by complete release of the debittering intracellular aminopeptidase N.
View Article and Find Full Text PDFThree mutants of the antibiotic nisin Z, in which the Val32 residue was replaced by a Glu, Lys or Trp residue, were produced and characterized for the purpose of establishing the role of charge differences in the C-terminal part of nisin on antimicrobial activity and signaling properties. 1H-NMR analyses showed that all three mutants harbor an unmodified serine residue at position 33, instead of the usual dehydroalanine. Apparently, the nature of the residue preceding the serine to be dehydrated, strongly affects the efficiency of modification.
View Article and Find Full Text PDFThe interaction of nisin Z and a nisin Z mutant carrying a negative charge in the C-terminus ([Glu-32]-nisin Z) with anionic lipids was characterized in model membrane systems, and bacterial membrane systems. We focused on three possible steps in the mode of action of nisin, i.e.
View Article and Find Full Text PDFCell-density-dependent gene expression appears to be widely spread in bacteria. This quorum-sensing phenomenon has been well established in Gram-negative bacteria, where N-acyl homoserine lactones are the diffusible communication molecules that modulate cell-density-dependent phenotypes. Similarly, a variety of processes are known to be regulated in a cell-density- or growth-phase-dependent manner in Gram-positive bacteria.
View Article and Find Full Text PDFLactic acid bacteria are widely used in industrial food fermentations, contributing to flavour, texture and preservation of the fermented products. Here we describe recent advances in the development of controlled gene expression systems, which allow the regulated overproduction of any desirable protein by lactic acid bacteria. Some systems benefit from the fact that the expression vectors, marker genes and inducing factors can be used directly in food applications since they are all derived from food-grade lactic acid bacteria.
View Article and Find Full Text PDFEur J Biochem
November 1996
Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, beta-methyl-lanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray mass spectrometry. Five constituents, [2-hydroxy-Ala5]nisin, [Ile4-amide,pyruvyl-Leu6]des-Dha5-nisin, [Met(O)21]nisin, [Ser33]nisin, and nisin-(1-32)-peptide amide, were found in a commercial nisin sample.
View Article and Find Full Text PDFAppl Environ Microbiol
October 1996
The kinetics, control, and efficiency of nisin-induced expression directed by the nisA promoter region were studied in Lactococcus lactis with transcriptional and translational fusions to the gusA reporter genes. In the nisin-producing L. lactis strain NZ9700, the specific beta-glucuronidase activity increased very rapidly after mid-exponential growth until the maximum level at the start of the stationary phase was reached.
View Article and Find Full Text PDFThe lantibiotic lacticin 481 is a bacteriocin produced by Lactococcus lactis ssp. lactis. This polypeptide contains 27 amino acids, including the unusual residues dehydrobutyrine and the thioether-bridging lanthionine and 3-methyllanthionine.
View Article and Find Full Text PDFThe promoters in the nisin gene cluster nisABTCIPRKFEG of Lactococcus lactis were characterized by primer extension and transcriptional fusions to the Escherichia coli promoterless beta-glucuronidase gene (gusA). Three promoters preceding the nisA, nisR, and nisF genes, which all give rise to gusA expression in the nisin-producing strain L. lactis NZ9700, were identified.
View Article and Find Full Text PDFLantibiotics form a group of modified peptides with unique structures, containing post-translationally modified amino acids such as dehydrated and lanthionine residues. In the gram-positive bacteria that secrete these lantibiotics, the gene clusters flanking the structural genes for various linear (type A) lantibiotics have recently been characterized. The best studied representatives are those of nisin (nis), subtilin (spa), epidermin (epi), Pep5 (pep), cytolysin (cyl), lactocin S (las) and lacticin 481 (lct).
View Article and Find Full Text PDFWhereas protein engineering of enzymes and structural proteins nowadays is an established research tool for studying structure-function relationships of polypeptides and for improving their properties, the engineering of posttranslationally modified peptides, such as the lantibiotics, is just coming of age. The engineering of lantibiotics is less straightforward than that of unmodified proteins, since expression systems should be developed not only for the structural genes but also for the genes encoding the biosynthetic enzymes, immunity protein and regulatory proteins. Moreover, correct posttranslational modification of specific residues could in many cases be a prerequisite for production and secretion of the active lantibiotic, which limits the number of successful mutations one can apply.
View Article and Find Full Text PDFMonomolecular layers of lipids at the air/water interface have been used as a model membrane to study membrane interactions of the lantibiotic nisin. The natural lantibiotics nisin A and nisin Z proved to have a high affinity for the anionic lipids phosphatidylglycerol and bis(phosphatidyl)glycerol (cardiolipin). The interaction with zwitterionic phopholipids or neutral lipids is very low at surface pressures higher than 32 mN/m.
View Article and Find Full Text PDFThe post-translationally modified, antimicrobial peptide nisin is secreted by strains of Lactococcus lactis that contain the chromosomally located nisin biosynthetic gene cluster nisABTCIPRKFEG. When a 4-base pair deletion is introduced into the structural nisA gene (delta nisA), transcription of delta nisA is abolished. Transcription of the delta nisA gene is restored by adding subinhibitory amounts of nisin, nisin mutants, or nisin analogs to the culture medium, but not by the unmodified precursor peptide or by several other antimicrobial peptides.
View Article and Find Full Text PDFLantibiotics form a family of highly modified peptides which are secreted by several Gram-positive bacteria. They exhibit antimicrobial activity, mainly against other Gram-positive bacteria, by forming pores in the cellular membrane. These antimicrobial peptides are ribosomally synthesized and contain leader peptides which do not show the characteristics of signal sequences.
View Article and Find Full Text PDFAppl Environ Microbiol
August 1995
Nisin is a 3.4-kDa antimicrobial peptide that, as a result of posttranslational modifications, contains unsaturated amino acids and lanthionine residues. It is applied as a preservative in various food products.
View Article and Find Full Text PDFLantibiotics are bacteriocins that contain unusual amino acids such as lanthionines and alpha, beta-didehydro residues generated by posttranslational modification of a ribosomally synthesized precursor protein. The structural gene encoding the novel lantibiotic epilancin K7 from Staphylococcus epidermidis K7 was cloned and its nucleotide sequence was determined. The gene, which was named elkA, codes for a 55-residue preprotein, consisting of an N-terminal 24-residue leader peptide, and a C-terminal 31-residue propeptide which is posttranslationally modified and processed to yield mature epilancin K7.
View Article and Find Full Text PDFA model is presented for the 3-D structure of the catalytic domain of the putative leader peptidase NisP of Lactococcus lactis, and the interaction with its specific substrate, the precursor of the lantibiotic nisin. This homology model is based on the crystal structures of subtilisin BPN' and thermitase in complex with the inhibitor eglin. Predictions are made of the general protein fold, inserted loops, Ca2+ binding sites, aromatic interactions and electrostatic interactions of NisP.
View Article and Find Full Text PDF