We studied the prognostic value of primary tumor sidedness in metastatic colorectal cancer over time and across treatment lines. Population data on synchronous metastatic colorectal cancer patients were extracted from the Netherlands Cancer Registry and SEER database. Pubmed, EMBASE and Cochrane library were searched for prospective studies on metastatic colorectal cancer to conduct a meta-analysis.
View Article and Find Full Text PDFObjectives: Location of the primary tumor has prognostic value and predicts the effect of certain therapeutics in synchronous metastatic colorectal cancer. We investigated whether the association between primary tumor resection (PTR) and overall survival (OS) also depends on tumor location.
Methods: Data on synchronous metastatic colorectal cancer patients from the Netherlands Cancer Registry (n=16,106) and Surveillance, Epidemiology, and End Results (SEER) registry (n=19,584) were extracted.
Background: The survival and proliferation of multiple myeloma (MM) cells in the bone marrow (BM) critically depend on interaction with stromal cells expressing the chemokine CXCL12. CXCL12 regulates the homing to the BM niche by mediating the transendothelial migration and adhesion/retention of the MM cells. The gamma isoform of CXCL12 (CXCL12γ) has been reported to be highly expressed in mouse BM and to show enhanced biological activity compared to the 'common' CXCL12α isoform, mediated by its unique extended C-terminal domain, which binds heparan sulfate proteoglycans (HSPGs) with an extraordinary high affinity.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an aggressive non-Hodgkin lymphoma subtype arising from naïve B cells. Although novel therapeutics have improved patient prognosis, drug resistance remains a key problem. Here, we show that the SRC-family tyrosine kinase hematopoietic cell kinase (HCK), which is primarily expressed in the hematopoietic lineage but not in mature B cells, is aberrantly expressed in MCL, and that high expression of HCK is associated with inferior prognosis of MCL patients.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature CD5 B cells in blood. Spontaneous apoptosis of CLL cells has hampered in-depth investigation of CLL pathogenesis. Here we describe the generation of three monoclonal mouse cell lines, EMC2, EMC4 and EMC6, from the CLL mouse model based on sporadic expression of SV40 large T antigen.
View Article and Find Full Text PDFThe phosphoinositide 3-kinases (PI3Ks) are critical components of the B-cell receptor (BCR) pathway and have an important role in the pathobiology of chronic lymphocytic leukemia (CLL). Inhibitors of PI3Kδ block BCR-mediated cross-talk between CLL cells and the lymph node microenvironment and provide significant clinical benefit to CLL patients. However, the PI3Kδ inhibitors applied thus far have limited direct impact on leukemia cell survival and thus are unlikely to eradicate the disease.
View Article and Find Full Text PDFSmall-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration.
View Article and Find Full Text PDFThe development and antigen-dependent differentiation of B lymphocytes are orchestrated by an array of growth factors, cytokines, and chemokines that require tight spatiotemporal regulation. Heparan sulfate proteoglycans specifically bind and regulate the bioavailability of soluble protein ligands, but their role in the immune system has remained largely unexplored. Modification of heparan sulfate by glucuronyl C5-epimerase (Glce) controls heparan sulfate-chain flexibility and thereby affects ligand binding.
View Article and Find Full Text PDFThe development of lymphoid organs depends on cross talk between hematopoietic cells and mesenchymal stromal cells and on vascularization of the lymphoid primordia. These processes are orchestrated by cytokines, chemokines, and angiogenic factors that require tight spatiotemporal regulation. Heparan sulfate (HS) proteoglycans are molecules designed to specifically bind and regulate the bioactivity of soluble protein ligands.
View Article and Find Full Text PDFExpression of the heparan sulfate proteoglycan syndecan-1 is a hallmark of both normal and multiple myeloma (MM) plasma cells. Syndecan-1 could affect plasma cell fate by strengthening integrin-mediated adhesion via its core protein and/or by accommodating and presenting soluble factors via its HS side chains. Here, we show that inducible RNAi-mediated knockdown of syndecan-1 in human MM cells leads to reduced growth rates and a strong increase of apoptosis.
View Article and Find Full Text PDFChemokine-controlled migration plays a critical role in B-cell development, differentiation, and function, as well as in the pathogenesis of B-cell malignancies, including the plasma cell neoplasm multiple myeloma (MM). Here, we demonstrate that stimulation of B cells and MM cells with the chemokine stromal cell-derived factor-1 (SDF-1) induces strong migration and activation of the Ras-like GTPase Ral. Inhibition of Ral, by expression of the dominant negative RalN28 mutant or of RalBPDeltaGAP, a Ral effector mutant that sequesters active Ral, results in impaired SDF-1-induced migration of B cells and MM cells.
View Article and Find Full Text PDFWe investigated whether inhaling peak concentrations of aldehydes several times daily is more damaging than semi-continuously inhaling low-dose aldehydes. We exposed Xpa-/-p53+/- knock-out mice either intermittently or semi-continuously to mixed acetaldehyde, formaldehyde, and acrolein. The intermittent regimen entailed exposure to the aldehydes 7 min every 45 min, 12 times/day, 5 days/week, corresponding to concentrations inhaled by smokers.
View Article and Find Full Text PDFGlucuronidation is a major hepatic detoxification pathway for endogenous and exogenous compounds, resulting in the intracellular formation of polar metabolites that require specialized transporters for elimination. Multidrug resistance proteins (MRPs) are expressed in the liver and can transport glucuronosyl-conjugates. Using morphine as a model aglycone, we demonstrate that morphine-3-glucuronide (M3G), the predominant metabolite, is transported in vitro by human MRP2 (ABCC2), a protein present in the apical membrane of hepatocytes.
View Article and Find Full Text PDFSome cellular uptake systems for (anti)folates function optimally at acidic pH. We have tested whether this also applies to efflux from cells by breast cancer resistance protein (BCRP; ABCG2), which has been reported to transport folic acid, methotrexate, and methotrexate di- and triglutamate at physiological pH. Using Spodoptera frugiperda-BCRP membrane vesicles, we showed that the ATP-dependent vesicular transport of 1 muM methotrexate by BCRP is 5-fold higher at pH 5.
View Article and Find Full Text PDFBackground/aim: Multidrug Resistance Protein 3 (MRP3) transports bile salts and glucuronide conjugates in vitro and is postulated to protect the liver in cholestasis. Whether the absence of Mrp3 affects these processes in vivo is tested.
Methods: Mrp3-deficient mice were generated and the contribution of Mrp3 to bile salt and glucuronide conjugate transport was tested in (1): an Ussing-chamber set-up with ileal explants (2), the liver during bile-duct ligation (3), liver perfusion experiments, and (4) in vitro vesicular uptake experiments.
Multidrug resistance (MDR) remains a major obstacle to successful chemotherapeutic treatment of cancer and can be caused by overexpression of P-glycoprotein, the MDR1 gene product. To further validate a knockdown approach for circumventing MDR, we developed a P-glycoprotein inhibition strategy using short hairpin RNA interference (shRNAi) and now show efficacy and target specificity in vivo. Two of eight tested shRNAi constructs targeted against human MDR1 mRNA inhibited expression of P-glycoprotein by >90%, whereas control shRNAi had no effect.
View Article and Find Full Text PDFGlucuronidation is a major detoxification pathway for endogenous and exogenous compounds in mammals that results in the intracellular formation of polar metabolites, requiring specialized transporters to cross biological membranes. By using morphine as a model aglycone, we demonstrate that multidrug resistance protein 3 (MRP3/ABCC3), a protein present in the basolateral membrane of polarized cells, transports morphine-3-glucuronide (M3G) and morphine-6-glucuronide in vitro. Mrp3(-/-) mice are unable to excrete M3G from the liver into the bloodstream, the major hepatic elimination route for this drug.
View Article and Find Full Text PDFProstaglandins are involved in a wide variety of physiological and pathophysiological processes, but the mechanism of prostaglandin release from cells is not completely understood. Although poorly membrane permeable, prostaglandins are believed to exit cells by passive diffusion. We have investigated the interaction between prostaglandins and members of the ATP-binding cassette (ABC) transporter ABCC [multidrug resistance protein (MRP)] family of membrane export pumps.
View Article and Find Full Text PDFMultidrug resistance protein 2 (MRP2) belongs to the ATP binding cassette family of transporters. Its substrates include organic anions and anticancer drugs. We have used transport assays with vesicles derived from Sf9 insect cells overproducing MRP2 to study the interactions of drugs, organic anions, and bile acids with three MRP2 substrates: estradiol-17-beta-d-glucuronide (E217betaG), methotrexate, and glutathione-S-dinitrophenol.
View Article and Find Full Text PDF