Front Behav Neurosci
August 2024
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions.
View Article and Find Full Text PDFThe lateral septum (LS) is composed of heterogeneous cell types that are important for various motivated behaviors. However, the transcriptional profiles, spatial arrangement, function, and connectivity of these cell types have not been systematically studied. Using single-nucleus RNA sequencing, we delineated diverse genetically defined cell types in the LS that play distinct roles in reward processing.
View Article and Find Full Text PDFThe nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear.
View Article and Find Full Text PDFThe nucleus accumbens (NAc) is critical in mediating reward seeking and is also involved in negative emotion processing, but the cellular and circuitry mechanisms underlying such opposing behaviors remain elusive. Here, using the recently developed AAV1-mediated anterograde transsynaptic tagging technique in mice, we show that NAc neurons receiving basolateral amygdala inputs (NAc) promote positive reinforcement via disinhibiting dopamine neurons in the ventral tegmental area (VTA). In contrast, NAc neurons receiving paraventricular thalamic inputs (NAc) innervate GABAergic neurons in the lateral hypothalamus (LH) and mediate aversion.
View Article and Find Full Text PDFFeeding behavior is regulated by both the homeostatic needs of the body and hedonic values of the food. Easy access to palatable energy-dense foods and the consequent obesity epidemic stress the urgent need for a better understanding of neural circuits that regulate hedonic feeding. Here, we report that neurotensin-positive neurons in the lateral septum (LS) play a crucial role in regulating hedonic feeding.
View Article and Find Full Text PDFThe brain continuously receives diverse information about the external environment and changes in the homeostatic state. The attribution of salience determines which stimuli capture attention and, therefore, plays an essential role in regulating emotions and guiding behaviors. Although the thalamus is included in the salience network, the neural mechanism of how the thalamus contributes to salience processing remains elusive.
View Article and Find Full Text PDFExperimental autoimmune prostatitis (EAP) is a well-established model induced by an autoimmune response to prostate antigen. The symptomatic, pathological, and immunological characteristics of EAP animals are highly consistent with human chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), which makes EAP an ideal model for this disease. Here, we investigate the influence of EAP on male rat sexual function and the efficacy of anti-inflammatory therapy with celecoxib.
View Article and Find Full Text PDFDrug addiction is a chronic relapsing brain disease characterized by compulsive, out-of-control drug use and the appearance of negative somatic and emotional consequences when drug access is prevented. The limited efficacy of treatment urges researchers toward a deeper understanding of the neural mechanism of drug addiction. Brain circuits that regulate reward and motivation are considered to be the neural substrate of drug addiction.
View Article and Find Full Text PDFA major cause of repeated relapses is a craving for the drug. Drug craving increases progressively during the abstinence period, a phenomenon termed incubation of drug craving. Here, we describe a morphine conditioned place preference (CPP) protocol for measuring the incubation of craving in rats.
View Article and Find Full Text PDFDisruptions of the FOXP2 gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted Foxp2 in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task.
View Article and Find Full Text PDFAccumulating evidence indicates that cerebellar long-term potentiation (LTP) is necessary for procedural learning. However, little is known about its underlying molecular mechanisms. Whereas AMPA receptor (AMPAR) subunit rules for synaptic plasticity have been extensively studied in relation to declarative learning, it is unclear whether these rules apply to cerebellum-dependent motor learning.
View Article and Find Full Text PDFLoss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2.
View Article and Find Full Text PDFThe enzyme glucocerebrosidase (GBA) hydrolyses glucosylceramide (GlcCer) in lysosomes. Markedly reduced GBA activity is associated with severe manifestations of Gaucher disease including neurological involvement. Mutations in the GBA gene have recently also been identified as major genetic risk factor for Parkinsonism.
View Article and Find Full Text PDFTwo recent studies provide important insights into the organization of premotor circuitries, showing that control of highly-specific skilled forelimb movements, such as reaching and grasping, requires activation of specific subpopulations of neurons in the brainstem and spinal cord.
View Article and Find Full Text PDFFamilial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients.
View Article and Find Full Text PDFThe genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific defects in synaptic plasticity.
View Article and Find Full Text PDF