Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.
View Article and Find Full Text PDFThe tailoring of spin-crossover films has made significant progress over the past decade, mostly motivated by the prospect in technological applications. In contrast to spin-crossover complexes in solution, the investigation of the ultrafast switching in spin-crossover films has remained scarce. Combining the progress in molecule synthesis and film growth with the opportunities at X-ray free-electron lasers, we study the photoinduced spin-state switching dynamics of a molecular film at room temperature.
View Article and Find Full Text PDFThe synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases.
View Article and Find Full Text PDFA change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices.
View Article and Find Full Text PDFThe molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [Fe(HB(pz))phen].
View Article and Find Full Text PDFFemtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity.
View Article and Find Full Text PDFThe advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2022
The SASE3 soft X-ray beamline at the European XFEL has been designed and built to provide experiments with a pink or monochromatic beam in the photon energy range 250-3000 eV. Here, the focus is monochromatic operation of the SASE3 beamline, and the design and performance of the SASE3 grating monochromator are reported. The unique capability of a free-electron laser source to produce short femtosecond pulses of a high degree of coherence challenges the monochromator design by demanding control of both photon energy and temporal resolution.
View Article and Find Full Text PDFMagnetic nanoparticles such as FePt in the L1 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles.
View Article and Find Full Text PDFSecond-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft x-ray Self-Amplified Spontaneous Emission (SASE3) undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode.
View Article and Find Full Text PDFWe demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)] how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation.
View Article and Find Full Text PDFThe ability of resonant X-ray emission spectroscopy (XES) to recover physical oxidation state information, which may often be ambiguous in conventional X-ray spectroscopy, is demonstrated. By combining Kβ XES with resonant excitation in the XAS pre-edge region, resonant Kβ XES (or 1s3p RXES) data are obtained, which probe the 3d final-state configuration. Comparison of the non-resonant and resonant XES for a series of high-spin ferrous and ferric complexes shows that oxidation state assignments that were previously unclear are now easily made.
View Article and Find Full Text PDFThe dinickel(II) dihydride complex (1 ) of a pyrazolate-based compartmental ligand with β-diketiminato (nacnac) chelate arms (L ), providing two pincer-type {N } binding pockets, has been reported to readily eliminate H and to serve as a masked dinickel(I) species. Discrete dinickel(I) complexes (2 , 2 ) of L are now synthesized via a direct reduction route. They feature two adjacent T-shaped metalloradicals that are antiferromagnetically coupled, giving an S=0 ground state.
View Article and Find Full Text PDFCalcium is an abundant, nontoxic metal that finds many roles in synthetic and biological systems including the oxygen-evolving complex (OEC) of photosystem II. Characterization methods for calcium centers, however, are underdeveloped compared to those available for transition metals. Valence-to-core X-ray emission spectroscopy (VtC XES) selectively probes the electronic structure of an element's chemical environment, providing insight that complements the geometric information available from other techniques.
View Article and Find Full Text PDFThe nitrogen and sulfur K-edge X-ray absorption spectra of aqueous 2-thiopyridone, a model system for excited-state proton transfer in several recent time-resolved measurements, have been simulated from ab initio molecular dynamics. Spectral signatures of the local intra- and inter-molecular structure are identified and rationalized, which facilitates experimental interpretation and optimization. In particular, comparison of aqueous and gas phase spectrum simulations assesses the previously unquantified solvatization effects, where hydrogen bonding is found to yield solvatochromatic shifts up to nearly 1 eV of the main peak positions.
View Article and Find Full Text PDFWe have built a laboratory spectrometer for X-ray emission spectroscopy. The instrument is employed in catalysis research. The key component is a von Hamos full cylinder optic with Highly Annealed Pyrolytic Graphite (HAPG) as a dispersive element.
View Article and Find Full Text PDFUnderstanding the detailed electronic structure of transition metal ions is essential in numerous areas of inorganic chemistry. In particular, the ability to map out the many particle d-d spectrum of a transition metal catalyst is key to understanding and predicting reactivity. However, from a practical perspective, there are often experimental limitations on the ability to determine the energetic ordering, and multiplicity of all the excited states.
View Article and Find Full Text PDFIron sulfur (FeS) proteins perform a wide range of biological functions including electron transfer and catalysis. Understanding the complex reactivity of these systems requires a detailed understanding of their electronic properties, which are encoded in the low-energy d-d excited states. Here we demonstrate that iron L-edge 2p3d resonant inelastic X-ray scattering (RIXS) can measure d-d excitation spectra in a series of monomeric, dimeric, and tetrameric FeS model complexes.
View Article and Find Full Text PDFLigand field spectra provide direct information about the electronic structure of transition metal complexes. However, these spectra are difficult to measure by conventional optical techniques due to small cross sections for d-to-d transitions and instrumental limitations below 4000 cm. 2p3d resonant inelastic X-ray scattering (RIXS) is a second order process that utilizes dipole allowed 2p to 3d transitions to access d-d excited states.
View Article and Find Full Text PDFPicosecond X-ray absorption (XA) spectroscopy at the S K-edge (∼2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation.
View Article and Find Full Text PDFSpectroscopic probes of the electronic structure of transition metal-containing materials are invaluable to the design of new molecular catalysts and magnetic systems. Herein, we show that 2p3d resonant inelastic X-ray scattering (RIXS) can be used to observe both spin-allowed and (in the V case) spin-forbidden d-d excitation energies in molecular vanadium complexes. The spin-allowed d-d excitation energies determined by 2p3d RIXS are in good agreement with available optical data.
View Article and Find Full Text PDFTime-resolved nitrogen-1s spectroscopy in the X-ray water window is presented as a novel probe of metal-ligand interactions and transient states in nitrogen-containing organic compounds. New information on iron(II) polypyridyl complexes via nitrogen core-level transitions yields insight into the charge density of the photoinduced high-spin state by comparing experimental results with time-dependent density functional theory. In the transient high-spin state, the 3d electrons of the metal center are more delocalized over the nearest-neighbor nitrogen atoms despite increased bond lengths.
View Article and Find Full Text PDFUsing polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O and formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state.
View Article and Find Full Text PDFA guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan-Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn-Sham matrix, preserving the ordering of orbital occupations.
View Article and Find Full Text PDF