Publications by authors named "KuiDong Gao"

Rock abrasivity is one of the main factors affecting the wear of rock-cutting tools, which is usually quantified by the CERCHAR Abrasivity Index (CAI). Researchers and engineers study tool wear and predict tool life based on the CAI of rocks. However, there is still a lack of a dataset on rock properties, especially the abrasivity of various rocks.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the design of the coal cowl, such as its offset distance and tilt angle, affects the loading rate of coal for thin seam mining using a shearer drum.
  • Results indicate that a smaller offset distance positively impacts loading rates, while the tilt angle has a complex effect, initially increasing and then decreasing the loading rate.
  • The research highlights the importance of optimizing the coal cowl parameters to enhance coal loading performance in thin coal seam mining operations.
View Article and Find Full Text PDF

Due to the influence of structural clearances, the shearer's oscillates and jumps concerning the scraper are frequent, which induces the collision and vibration impact of the traction components and exacerbates the traction failure of the shearer. Therefore, to explore the correlation between attitude disturbance and traction vibration, an experiment on the traction vibration is carried out, the spatial swaying of the shearer and vibration differences between two traction components are obtained, the influence of the lifting angle of the rocker arm is discussed, and the influence mechanism of the shearer attitude disturbance on traction vibration is elucidated. The results indicate that the rolling swing intensity of the shearer is the highest while the yawing swing intensity is the lowest, and the pitch swing intensity increases with the increase of the lifting angle of the rocker arm.

View Article and Find Full Text PDF

Severe nonradiative recombination and energy level mismatch in perovskite solar cells (PSCs) are key factors affecting efficiency. Here, we report an effective strategy for surface passivation and interfacial dipole engineering of perovskite films. By precisely introducing electron-withdrawing and electron-donating groups on 7-azaindole, we have effectively controlled the passivation ability of N atoms and the polarity of the interfacial dipole, thereby regulating the perovskite surface's work function and obtaining the optimal energy level matching.

View Article and Find Full Text PDF

Traditional coal-gangue recognition methods usually do not consider the impact of equipment noise, which severely limits its adaptability and recognition accuracy. This paper mainly studies the more accurate recognition of coal-gangue in the noise site environment with the operation of shearer, conveyor, transfer machine and other device in the process of top coal caving. Mel Frequency Cepstrum Coefficients (MFCC) smoothing method was introduced to express the intrinsic feature of sound pressure more clearly in the coal-gangue recognition site.

View Article and Find Full Text PDF

Ultrasonic flotation is useful for fine low-rank coal purification; however, the efficiency of ultrasonic flotation still needs to be improved. Because the dynamic behavior of flotation bubbles has significant effects on their flotation efficiency, it was investigated under different gas input conditions with and without ultrasound using the volume of fluid method and h-speed imaging. The results indicated that the gas input method can influence the final kinetic behavior of the flotation bubbles by changing the morphology of the initial bubble.

View Article and Find Full Text PDF

Design and fabrication of structurally optimized three-dimensional porous materials are highly desirable for engineering applications. Herein, through a facile bidirectional freezing technique, we prepared superelastic biomass sponges in air and underwater, which possess biomimetic porous sandwich-like architectures with lamellar layers interconnected by porous microstructures, similar to the structure of rice stems. This distinctive architecture was obtained by incorporating Typha orientalis fibers (TOFs) and graphene oxide (GO) nanosheets into sodium alginate (SA) matrix, in which SA flakes and GO nanosheets were intimately grown along TOFs.

View Article and Find Full Text PDF

In the present work, the working state of the crane leg is analyzed and discussed, and its structure is optimized. SolidWorks software is used for modeling; ANSYS software is used for finite element analysis. First of all, the constrained finite element method (CFEM) is used to analyze the linear eigenvalue buckling and geometric nonlinear buckling of outriggers with different cross-section shapes.

View Article and Find Full Text PDF

Coal mining professionals in coal mining have recognized that the assessment of top coal release rate can not only improve the recovery rate of top coal, but also improve the quality of coal. But the process was often performed using a manual-based operation mode, which intensifies workload and difficulty, and is at risk of human errors. The study designs a assessment system to give the caving output ratio in top coal caving as accurately as possible based on the parameters adaptive Takagi-Sugeno (T-S) fuzzy system and the Levenberg-Marquardt (LM) algorithm.

View Article and Find Full Text PDF

To improve the safety and the stability of the support under mines and reduce the cost, we design a new slipper-type hydraulic support with energy-efficiency and high reliability. To study its dynamics, we build a reverse kinematics model. We analyze the motion and the force for each component of the new support with a simulation in Matlab/Simulink.

View Article and Find Full Text PDF