Publications by authors named "Kui-Qing Peng"

Low-cost aqueous alkaline etching has been widely adopted for monocrystalline silicon surface texturing in current industrial silicon solar cells. However, conventional alkaline etching can only prepare upright pyramid structures on mono-crystalline silicon surfaces. This study demonstrates for the first time the use of ethylene glycol butyl ether (EGBE) to regulate aqueous anisotropic alkaline etching and prepare inverted pyramid structures on monocrystalline silicon surfaces.

View Article and Find Full Text PDF

Surface patterning without requiring expensive facilities and complex procedures is a major scientific and technological challenge. We report a simple surface patterning strategy on a silicon wafer surface. This strategy, termed galvanic microcontact imprinting lithography (GMIL), is based on the spontaneous galvanic oxidation of silicon due to the electrically coupled silicon/gold mold with lithographically defined patterns.

View Article and Find Full Text PDF

Solar water splitting represents one of the most promising strategies in the quest for clean and renewable energy. However, low conversion efficiency, use of sacrificial agents, and external bias for current water splitting system limit its practical application. Here, a gold-sensitized Si/ZnOcore/shell nanowire photoelectrochemical (PEC) cell is reported for efficient solar water oxidation.

View Article and Find Full Text PDF

Realization of broadband optical absorption enhancement in thin film c-Si solar cells is essential for improving energy conversion efficiency and reducing cost. Here, we demonstrate the fabrication of randomly arranged silicon nanorocket (SiNR) arrays as a new light trapping structure design for thin film silicon solar cells. The optical absorption of the randomly arranged SiNR arrays is investigated via finite-difference-frequency-domain (FDTD) simulation.

View Article and Find Full Text PDF

Inspired by metal corrosion in air, we demonstrate that metal-catalyzed electroless etching (MCEE) of silicon can be performed simply in aerated HF/H2O vapor for facile fabrication of three-dimensional silicon nanostructures such as silicon nanowires (SiNW) arrays. Compared to MCEE commonly performed in aqueous HF solution, the present pseudo gas phase etching offers exceptional simplicity, flexibility, environmental friendliness, and scalability for the fabrication of three-dimensional silicon nanostructures with considerable depths because of replacement of harsh oxidants such as H2O2 and AgNO3 by environmental-green and ubiquitous oxygen in air, minimum water consumption, and full utilization of HF.

View Article and Find Full Text PDF

Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable.

View Article and Find Full Text PDF

We report the facile fabrication of three-dimensional (3D) silicon/hematite core/shell nanowire arrays decorated with gold nanoparticles (AuNPs) and their potential application for sunlight-driven solar water splitting. The hematite and AuNPs respectively play crucial catalytic and plasmonic photosensitization roles, while silicon absorbs visible light and generates high photocurrent. Under simulated solar light illumination, solar water splitting with remarkable efficiency is achieved with no external bias applied.

View Article and Find Full Text PDF

Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

View Article and Find Full Text PDF

Nanowire solar cells: Pt nanoparticle (PtNP) decorated C/Si core/shell nanowire photoelectrochemical solar cells show high conversion efficiency of 10.86 % and excellent stability in aggressive electrolytes under 1-sun AM 1.5 G illumination.

View Article and Find Full Text PDF

Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

View Article and Find Full Text PDF

We demonstrate Si nanohole arrays as a superior sunlight-absorbing nanostructure for photovoltaic solar cell applications. Under 1 sun AM1.5G illumination, a Si nanohole solar cell with p-n junctions via P diffusion exhibited a open-circuit voltage of 566.

View Article and Find Full Text PDF

High-density aligned n-type silicon nanowire (SiNW) arrays decorated with discrete 5-10 nm platinum nanoparticles (PtNPs) have been fabricated by aqueous electroless Si etching followed by an electroless platinum deposition process. Coating of PtNPs on SiNW sidewalls yielded a substantial enhancement in photoconversion efficiency and an apparent energy conversion efficiency of up to 8.14% for the PtNP-decorated SiNW-based photoelectrochemical solar cell using a liquid electrolyte containing Br(-)/Br(2) redox couple.

View Article and Find Full Text PDF