Publications by authors named "Kui Feng"

The last decade has witnessed significant progress in organic electrochemical transistors (OECTs) due to their enormous potential applications in various bioelectronic devices, such as artificial synapses, biological interfaces, and biosensors. The remarkable advance achieved in this filed is highly powered by the development of novel organic mixed ionic/electronic conductors (OMIECs). Among these, π-conjugated polymers (CPs), which are widely used in various optoelectronics, are emerging as key channel materials for OECTs.

View Article and Find Full Text PDF

Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM.

View Article and Find Full Text PDF
Article Synopsis
  • A novel method for controlling n-doping in organic semiconductors uses surface-functionalized gold nanoparticles (f-AuNPs) which only activate as a catalyst at mild temperatures (~70°C).
  • The study examined the reaction between the n-type dopant N-DMBI-H and various semiconductors, revealing that f-AuNPs are inactive at room temperature but enable rapid doping at elevated temperatures, achieving high electrical conductivities.
  • This approach enhances the development of n-doped films for applications in opto-electronic devices like transistors and solar cells, while also informing the design of new catalysts.
View Article and Find Full Text PDF

Diluting organic semiconductors with a host insulating polymer is used to increase the electronic mobility in organic electronic devices, such as thin film transistors, while considerably reducing material costs. In contrast to organic electronics, bioelectronic devices such as the organic electrochemical transistor (OECT) rely on both electronic and ionic mobility for efficient operation, making it challenging to integrate hydrophobic polymers as the predominant blend component. This work shows that diluting the n-type conjugated polymer p(N-T) with high molecular weight polystyrene (10 KDa) leads to OECTs with over three times better mobility-volumetric capacitance product (µC*) with respect to the pristine p(N-T) (from 4.

View Article and Find Full Text PDF

Developing polymers with high electrical conductivity (σ) after n-doping is a great challenge for the advance of the field of organic thermoelectrics (OTEs). Herein, we report a series of thiazole imide-based n-type polymers by gradually increasing selenophene content in polymeric backbone. Thanks to the strong intramolecular noncovalent N⋅⋅⋅S interaction and enhanced intermolecular Se⋅⋅⋅Se interaction, with the increase of selenophene content, the polymers show gradually lowered LUMOs, more planar backbone, and improved film crystallinity versus the selenophene-free analogue.

View Article and Find Full Text PDF

The scarcity of n-type polymers with high electrical conductivity () and power factor (PF) is the major challenge for organic thermoelectrics (OTEs). By integrating cyano functionalities and an intramolecular conformation lock, we herein synthesize a new electron-deficient building block, CNg4T2, bearing long 1,4,7,10-tetraoxahendecyl side chains, and then further develop two n-type polythiophene derivatives, CNg4T2-2FT and CNg4T2-CNT2, with 3,4-difluorothiophene and 3,3'-dicyano-2,2'-bithiophene as co-units, respectively. Compared with CNg4T2-2FT, CNg4T2-CNT2 features a deeper-positioned lowest unoccupied molecular orbital (LUMO) while maintaining a high degree of backbone coplanarity.

View Article and Find Full Text PDF

High-performance n-type polymeric mixed ionic-electronic conductors (PMIECs) are essential for realizing organic electrochemical transistors (OECTs)-based low-power complementary circuits and biosensors, but their development still remains a great challenge. Herein, by devising two novel n-type polymers (f-BTI2g-SVSCN and f-BSeI2g-SVSCN) containing varying selenophene contents together with their thiophene-based counterpart as the control, it is demonstrated that gradually increasing selenophene loading in polymer backbones can simultaneously yield lowered lowest unoccupied molecular orbital levels, boosted charge-transport properties, and improved ion-uptake capabilities. Therefore, a remarkable volumetric capacitance (C*) of 387.

View Article and Find Full Text PDF

Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity.

View Article and Find Full Text PDF

n-Doped polymers with high electrical conductivity (σ) are still very scarce in organic thermoelectrics (OTEs), which limits the development of efficient organic thermoelectric generators. A series of fused bithiophene imide dimer-based polymers, PO8, PO12, and PO16, incorporating distinct oligo(ethylene glycol) side-chain to optimize σ is reported here. Three polymers show a monotonic electron mobility decrease as side-chain size increasing due to the gradually lowered film crystallinity and change of backbone orientation.

View Article and Find Full Text PDF

Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene (CNDE), 3-fluoro-1,4-dicyano-butadiene (CNFDE), and 2,3-difluoro-1,4-dicyano-butadiene (CNDFDE), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (-3.

View Article and Find Full Text PDF

The shortage of narrow band gap polymer acceptors with high electron mobility is the major bottleneck for developing efficient all-polymer solar cells (all-PSCs). Herein, we synthesize a distannylated electron-deficient biselenophene imide monomer (BSeI-Tin) with high purity/reactivity, affording an excellent chance to access acceptor-acceptor (A-A) type polymer acceptors. Copolymerizing BSeI-Tin with dibrominated monomer Y5-Br, the resulting A-A polymer PY5-BSeI shows a higher molecular weight, narrower band gap, deeper-lying frontier molecular orbital levels and larger electron mobility than the donor-acceptor type counterpart PY5-BSe.

View Article and Find Full Text PDF
Article Synopsis
  • The buried interface in perovskite solar cells (PSCs) is crucial for their efficiency and stability, but studying it is difficult because it’s not directly visible.
  • A new strategy uses formamidine oxalate (FOA) to enhance the SnO/perovskite buried interface by reducing defects and improving carrier dynamics.
  • This method boosts the efficiency of PSCs from 22.40% to 25.05% and increases their stability, offering a promising approach to optimize buried interfaces for better solar cell performance.
View Article and Find Full Text PDF

Doped n-type polymers usually exhibit low electrical conductivities and thermoelectric power factors (PFs), restricting the development of high-performance p-n-junction-based organic thermoelectrics (OTEs). Herein, the design and synthesis of a new cyano-functionalized fused bithiophene imide dimer (f-BTI2), CNI2, is reported, which synergistically combines the advantages of both cyano and imide functionalities, thus leading to substantially higher electron deficiency than the parent f-BTI2. On the basis of this novel building block, a series of n-type donor-acceptor and acceptor-acceptor polymers are successfully synthesized, all of which show good solubility, deep-lying frontier molecular orbital levels, and favorable polymer chain orientation.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the challenge of degradation in organic solar cells (OSCs) by creating a thermally stable multicomponent photoactive layer through a simple one-pot polymerization process.
  • This new layer achieves a high power conversion efficiency of 11.8% while maintaining over 80% of its initial efficiency for more than 1000 hours, showcasing a strong balance between efficiency and durability.
  • The research highlights the importance of specific block polymers in maintaining stable film morphology and effective charge transport during long operation periods, which could lead to more affordable and reliable solar cell technology.
View Article and Find Full Text PDF

The development of n-type organic semiconductors critically relies on the design and synthesis of highly electron-deficient building blocks with good solubility and small steric hindrance. We report here a strongly electron-deficient dithienylpyrazinediimide (TPDI) and its n-type semiconducting polymers. The pyrazine substitution leads to the resulting polymers with much lower-lying lowest unoccupied molecular orbital (LUMO) levels and improved backbone planarity compared to the reported dithienylbenzodiimide (TBDI)- and fluorinated dithienylbenzodiimide (TFBDI)-based polymer analogues, thus yielding n-type transport character with an electron mobility up to 0.

View Article and Find Full Text PDF

Charge carrier nonradiative recombination (NRR) caused by interface defects and nonoptimal energy level alignment is the primary factor restricting the performance improvement of perovskite solar cells (PSCs). Interfacial modification is a vital strategy to restrain NRR and enable high-performance PSCs. We report here two interfacial materials, PhI-TPA and BTZI-TPA, consisting of phthalimide and a 2,1,3-benzothiadiazole-5,6-dicarboxylicimide core, respectively.

View Article and Find Full Text PDF

The development of high-performance n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks with optimized physicochemical properties. By meticulously installing an imide group onto fluorene and its cyanated derivative, we report here two very electron-deficient building blocks, imide-functionalized fluorenone (FOI) and its cyanated derivative (FCNI), both featuring a deep-lying lowest unoccupied molecular orbital energy level down to -4.05 eV and highly coplanar framework, endowing them ideal units for constructing n-type polymers.

View Article and Find Full Text PDF
Article Synopsis
  • Development of n-type organic mixed ionic-electronic conductors (OMIECs) is challenging, leading to lower performance metrics in organic electrochemical transistors (OECTs) compared to p-type versions.
  • Researchers synthesized two n-type donor-acceptor polymers with enhanced properties, specifically focusing on one that underwent cyanation to improve ion uptake and charge transport.
  • The cyanated polymer, f-BTI2g-TVTCN, achieved record levels of electron mobility and capacitance in OECTs, showcasing the potential of cyano functionalization in creating high-performance n-type organic semiconductors.
View Article and Find Full Text PDF

All-polymer solar cells (all-PSCs) have attracted considerable attention owing to their pronounced advantages of excellent mechanical flexibility/stretchability and greatly enhanced device stability as compared to other types of organic solar cells (OSCs). Thanks to the extensive research efforts dedicated to the development of polymer acceptors, all-PSCs have achieved remarkable improvement of photovoltaic performance, recently. This review summarizes the recent progress of polymer acceptors based on the key electron-deficient building blocks, which include bithiophene imide (BTI) derivatives, boron-nitrogen coordination bond (B←N)-incorporated (hetero)arenes, cyano-functionalized (hetero)arenes, and fused-ring electron acceptors (FREAs).

View Article and Find Full Text PDF

Emerging organic solar cells based on a ternary strategy is one of the most effective methods for improving the blend film morphology, absorption ability, and device performances. On the other hand, this strategy has had very limited success in all-polymer solar cells (all-PSCs) because of the scarcity of new polymers and the challenges faced during third component optimization. Herein, highly efficient ternary all-PSCs were developed from siloxane-functionalized side chains with a wide-band-gap () polymer, Si-BDT, which is blended with a medium and ultra-narrow polymer donor and acceptor, PTB7-Th, and DCNBT-TPIC.

View Article and Find Full Text PDF
Article Synopsis
  • - Chemical doping is crucial for enhancing charge transport in organic semiconductors, but n-doping is often less efficient than p-doping, typically achieving below 10% efficiency.
  • - The study introduces a new method for n-doping using air-stable precursor-type molecular dopants combined with transition metal catalysts (like Pt, Au, and Pd), which increases doping efficiency and electrical conductivity significantly.
  • - This innovative approach not only improves the performance of semiconductor devices but also creates new research avenues for the combination of catalysts, dopants, and semiconductors in n-doping applications.
View Article and Find Full Text PDF

ConspectusIn the last three decades, p-type (hole-transporting) organic and polymeric semiconductors have achieved great success in terms of materials diversity and device performance, while the development of n-type (electron-transporting) analogues greatly lags behind, which is limited by the scarcity of highly electron-deficient building blocks with compact geometry and good solubility. However, such n-type semiconductors are essential due to the existence of the p-n junction and a complementary metal oxide semiconductor (CMOS)-like circuit in organic electronic devices. Among various electron-deficient building blocks, imide-functionalized arenes, such as naphthalene diimide (NDI) and perylene diimide (PDI), have been proven to be the most promising ones for developing n-type organic and polymeric semiconductors.

View Article and Find Full Text PDF

The development of n-type organic electrochemical transistors (OECTs) lags far behind their p-type counterparts. In order to address this dilemma, we report here two new fused bithiophene imide dimer (f-BTI2)-based n-type polymers with a branched methyl end-capped glycol side chain, which exhibit good solubility, low-lying LUMO energy levels, favorable polymer chain orientation, and efficient ion transport property, thus yielding a remarkable OECT electron mobility (μ ) of up to ≈10  cm  V  s and volumetric capacitance (C*) as high as 443 F cm , simultaneously. As a result, the f-BTI2TEG-FT-based OECTs deliver a record-high maximum geometry-normalized transconductance of 4.

View Article and Find Full Text PDF

Narrow-bandgap n-type polymers with high electron mobility are urgently demanded for the development of all-polymer solar cells (all-PSCs). Here, two regioregular narrow-bandgap polymer acceptors, L15 and MBTI, with two electron-deficient segments are synthesized by copolymerizing two dibrominated fused-ring electron acceptors (FREA) with distannylated aromatic imide, respectively. Taking full advantage of the FREA and the imide, both polymer acceptors show narrow bandgap and high electron mobility.

View Article and Find Full Text PDF

The remarkable advance of all-polymer solar cells (all-PSCs) achieved in the past decades is primarily powered by the innovation of polymer acceptors. However, most of high-performance all-PSCs are dominantly fabricated with halogenated solvents, which are detrimental to human bodies and the environment. Herein, eco-friendly solvent-processed all-PSCs were developed, based on wide-bandgap polymer poly[4,8-bis(5-(2-ethylhexylthio)thiophen-2-yl)-benzo-[1,2-b;4,5-b']dithiophene-alt-2,5-di(butyloctylthiophen-2-yl) -thiazolo[5,4-d]thiazole] (PSTZ) as donor and newly synthesized narrow-bandgap polymer 5,6-dicyano-2,1,3-benzothiadiazole indacenodithiophene (DCNBT-IDT) as acceptor.

View Article and Find Full Text PDF