The sun generates light and heat for life on Earth to flourish. However, during the late Hadean-early Archean epoch on Earth, the "faint young sun" (FYS) was less luminous, influencing prebiotic chemistry and, by extension, the origins of life (OoL). However, higher levels of ultraviolet (UV) radiation from the FYS, especially UV-C, due to the lack of an ozone layer, would likely have impacted the assembly, stability, persistence, and functions of prebiotic cellular precursors, i.
View Article and Find Full Text PDFHow life first arose on Earth is a mystery that humankind has sought to understand for millennia, and includes scientific, philosophical, societal, and religious aspects, amongst others [...
View Article and Find Full Text PDFThe pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact.
View Article and Find Full Text PDFConspectusAll life on Earth is composed of cells, which are built from and run by biological reactions and structures. These reactions and structures are generally the result of action by cellular biomolecules, which are indispensable for the function and survival of all living organisms. Specifically, biological catalysis, namely by protein enzymes, but also by other biomolecules including nucleic acids, is an essential component of life.
View Article and Find Full Text PDFBiophys Physicobiol
February 2023
While it is often believed that the origins of life required participation of early biomolecules, it has been recently proposed that "non-biomolecules", which would have been just as, if not more, abundant on early Earth, could have played a part. In particular, recent research has highlighted the various ways by which polyesters, which do not participate in modern biology, could have played a major role during the origins of life. Polyesters could have been synthesized readily on early Earth through simple dehydration reactions at mild temperatures involving abundant "non-biological" alpha hydroxy acid (AHA) monomers.
View Article and Find Full Text PDFα-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets.
View Article and Find Full Text PDFThe Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis.
View Article and Find Full Text PDFNucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids.
View Article and Find Full Text PDFThe rapid spread of the SARS-CoV-2 in the COVID-19 pandemic had raised questions on the route of transmission of this disease. Initial understanding was that transmission originated from respiratory droplets from an infected host to a susceptible host. However, indirect contact transmission of viable virus by fomites and through aerosols has also been suggested.
View Article and Find Full Text PDFPrebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don't spontaneously oligomerize under mild conditions without activation or catalysis.
View Article and Find Full Text PDFResearch on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future.
View Article and Find Full Text PDFA variety of organic chemicals were likely available on prebiotic Earth. These derived from diverse processes including atmospheric and geochemical synthesis and extraterrestrial input, and were delivered to environments including oceans, lakes, and subaerial hot springs. Prebiotic chemistry generates both molecules used by modern organisms, such as proteinaceous amino acids, as well as many molecule types not used in biochemistry.
View Article and Find Full Text PDFIn this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Compartmentalization was likely essential for primitive chemical systems during the emergence of life, both for preventing leakage of important components, i.e., genetic materials, and for enhancing chemical reactions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2017
A feature of many of the chemical systems plausibly involved in the origins of terrestrial life is that they are complex and messy-producing a wide range of compounds via a wide range of mechanisms. However, the fundamental behaviour of such systems is currently not well understood; we do not have the tools to make statistical predictions about such complex chemical networks. This is, in part, due to a lack of quantitative data from which such a theory could be built; specifically, functional measurements of messy chemical systems.
View Article and Find Full Text PDFThioesters and thioacetic acid (TAA) have been invoked as key reagents for the origin of life as activated forms of acetate analogous to acetyl-CoA. These species could have served as high-energy group-transfer reagents and allowed carbon insertions to form higher molecular weight compounds such as pyruvate. The apparent antiquity of the Wood-Ljungdahl CO2 fixation pathway and its presence in organisms which inhabit hydrothermal (HT) environments has also led to suggestions that there may be a connection between the abiotic chemistry of compounds similar to TAA and the origins of metabolism.
View Article and Find Full Text PDFContents 1. Introduction 1.1.
View Article and Find Full Text PDFWe tested the stability and reaction of several amino acids using hydrothermal system simulators: an autoclave and two kinds of flow reactors at 200-250 °C. This study generally showed that there is a variation in the individual amino acids survivability in the simulators. This is mainly attributed to the following factors; heat time, cold quenching exposure, metal ions and also silica.
View Article and Find Full Text PDFThe East Coast of Peninsular Malaysia faces the South China Sea and is vulnerable to oil pollution because of intense petroleum production activities in the area. The South China Sea is also a favored route for supertankers carrying crude oil to the Far East. Consequently, oil spills can occur, causing pollution and contamination in the surrounding areas.
View Article and Find Full Text PDF