Publications by authors named "Kuhajda F"

Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate.

View Article and Find Full Text PDF

Storage of excess calories as triglycerides is central to obesity and its associated disorders. Glycerol-3-phosphate acyltransferases (GPATs) catalyze the initial step in acylglyceride syntheses, including triglyceride synthesis. We utilized a novel small-molecule GPAT inhibitor, FSG67, to investigate metabolic consequences of systemic pharmacological GPAT inhibition in lean and diet-induced obese (DIO) mice.

View Article and Find Full Text PDF

Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1), we chose to further characterize fatty acid synthase (FASN).

View Article and Find Full Text PDF

Fatty acid synthase (FASN) is an emerging tumor-associated marker and a promising antitumor therapeutic target. In this study, we analyzed the expression of FASN in normal and molar placentas, as well as gestational trophoblastic neoplasia, and assessed the effects of a new FASN inhibitor, C93, on cellular proliferation and apoptosis in choriocarcinoma cells. Using a FASN-specific monoclonal antibody, we found that FASN immunoreactivity was detected in the cytotrophoblast and intermediate (extravillous) trophoblast of normal and molar placentas, as well as in placental site nodules.

View Article and Find Full Text PDF

Markers of early pancreatic cancer and its precursors are needed to improve the uniformly poor prognosis of this disease. Fatty acid synthase (FAS) catalyzes the synthesis of long-chain fatty acids and is overexpressed in most human solid tumors. We therefore evaluated serum FAS as a marker of pancreatic adenocarcinoma.

View Article and Find Full Text PDF

Fatty acid synthase (FAS) inhibition initiates selective apoptosis of cancer cells both in vivo and in vitro, which may involve malonyl-CoA metabolism. These findings have led to the exploration of malonyl-CoA decarboxylase (MCD) as a potential novel target for cancer treatment. MCD regulates the levels of cellular malonyl-CoA through the decarboxylation of malonyl-CoA to acetyl-CoA.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) and its upstream kinase, LKB1, act to both monitor and restore cellular energy in response to energy depletion. Studied extensively in liver and skeletal muscle, AMPK is phosphorylated and activated by LKB1 in response to increasing AMP/ATP ratios, which occur in a variety of settings including hypoxia, nutrient starvation and redox imbalance. Interest in the roles of both AMPK and LKB1 in cancer has grown substantially, following the identification of LKB1 as the tumor suppressor gene mutated in the Peutz-Jegher familial cancer syndrome.

View Article and Find Full Text PDF

Central and intraperitoneal C75, an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyl-transferase-1, inhibits eating in mice and rats. Mechanisms involved in feeding inhibition after central C75 have been identified, but little is yet known about how systemic C75 might inhibit eating. One issue is whether intraperitoneal C75 reduces food intake in rats by influencing normal physiological controls of food intake or acts nonselectively, for example by eliciting illness or aversion.

View Article and Find Full Text PDF

Purpose: Fatty acid synthase (FAS) is overexpressed in lung cancer, and we have investigated the potential use of FAS inhibitors for chemoprevention of lung cancer.

Experimental Design: Expression of FAS was evaluated in preinvasive human lung lesions (bronchial squamous dysplasia and atypical adenomatous hyperplasia) and in murine models of lung tumorigenesis [4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone-induced and urethane-induced lung tumors in A/J mice]. Then, the ability of pharmacologic inhibitors of FAS to prevent development of the murine tumors was investigated.

View Article and Find Full Text PDF

Obesity, defined by a body mass index greater than 30kg/m(2), claims an increasing number of lives every year, underscoring a dire need for effective therapeutic interventions. The origins of the obesity epidemic are complex, but commonly cited factors include the large quantities of calorie-rich food that are readily accessible in modern society; eating habits adapted to fast-paced lifestyles; low levels of physical activity; and genetic programs that have evolved, especially in populations prone to famine, to favor the storage of excess calories (i.e.

View Article and Find Full Text PDF

Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified.

View Article and Find Full Text PDF
Article Synopsis
  • Fatty acid synthase (FAS) is overexpressed in many cancers, making it a potential target for therapy, but previous inhibitors caused severe anorexia in test animals due to fatty acid oxidation stimulation.
  • C93, a newly designed inhibitor, was tested and shown to effectively inhibit FAS activity without affecting fatty acid oxidation in lung cancer cells.
  • The use of C93 resulted in significant tumor growth inhibition in preclinical lung cancer models without causing anorexia or weight loss, suggesting it could be a promising treatment option for non-small cell lung cancer.
View Article and Find Full Text PDF

The rising incidence of obesity, as a disorder of energy metabolism, has provoked a search for pharmacological agents that either increase energy expenditure or reduce food intake. The fatty acid oxidation pathway, and its rate-limiting enzyme carnitine palmitoyltransferase (CPT)-1 are potential targets for the treatment of obesity. The modulation of CPT-1 may simultaneously affect energy metabolism and food intake to aid in the management of obesity.

View Article and Find Full Text PDF

Fatty acid synthase (FAS), the enzyme responsible for the de novo synthesis of fatty acids, is highly expressed in ovarian cancers and most common human carcinomas. Inhibition of FAS and activation of AMP-activated protein kinase (AMPK) have been shown to be cytotoxic to human cancer cells in vitro and in vivo. In this report, we explore the cytotoxic mechanism of action of FAS inhibition and show that C93, a synthetic FAS inhibitor, increases the AMP/ATP ratio, activating AMPK in SKOV3 human ovarian cancer cells, which leads to cytotoxicity.

View Article and Find Full Text PDF

Purpose: Fatty acid synthase (FAS) is an emerging target for anticancer therapy with a variety of new FAS inhibitors being explored in preclinical models. The aim of this study was to use positron emission tomography with [(18)F]fluorodeoxyglucose (FDG-PET) to monitor the effects of the FAS inhibitor C75 on tumor glucose metabolism in a rodent model of human A549 lung cancer.

Materials And Methods: After a baseline FDG-PET scan, C75 was administered and post-treatment scans were performed serially.

View Article and Find Full Text PDF

Fatty acid synthase (FAS), the sole mammalian enzyme capable of de novo fatty acid synthesis, is highly expressed in most human carcinomas. FAS is associated with poor prognosis in breast and prostate cancer, is elaborated into the blood of cancer patients, and its inhibition is selectively cytotoxic to human cancer cells. Thus, FAS and fatty acid metabolism in cancer has become a focus for the potential diagnosis and treatment of cancer.

View Article and Find Full Text PDF

3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified.

View Article and Find Full Text PDF

Obesity and its attendant disorders, such as Type II diabetes, have reached epidemic proportions in the USA, and their prevalence is increasing globally. C75 is a small-molecule inhibitor of fatty acid synthase (FAS) and a stimulator of carnitine palmitoyl 1 activity, which causes profound weight loss in mice. Although C75 is not a compound that is destined for human drug development, it has provided two potential pathways to target in obesity therapy: fatty acid synthesis and fatty acid oxidation.

View Article and Find Full Text PDF

Activation of AKT and overexpression of fatty acid synthase (FAS) are frequently observed in human ovarian cancer. To explore a possible connection between AKT and FAS, immunohistochemical analyses were conducted on an ovarian cancer tissue microarray, which revealed a significant correlation between phosphorylated AKT (phospho-AKT) and expression of FAS. To investigate the relationship between phospho-AKT and FAS in vitro, a variety of experiments employing a specific phosphatidylinositol 3-OH kinase (PI3K) inhibitor (LY294002), inducible PTEN expression in PTEN-null cells, or AKT1 siRNA demonstrated that phosphatidylinositol-3 kinase (PI3K)/AKT signaling modulates FAS expression.

View Article and Find Full Text PDF

Fatty acid synthase (FAS) catalyzes the synthesis of palmitate from the sequential condensation of an acetyl primer with two carbon units added from malonyl-CoA. Inhibition of the beta-ketoacyl synthase domain of mammalian FAS leads to selective cytotoxicity to various cancer cell lines in vitro and in vivo. Also, inhibitors of FAS can cause reduced food intake and body weight in mice.

View Article and Find Full Text PDF

C75, a synthetic inhibitor of fatty acid synthase (FAS), causes anorexia and profound weight loss in lean and genetically obese mice. C75 also acts as a stimulator of carnitine palmitoyltransferase-1 to induce fatty acid oxidation. To approximate human obesity, we used a 2-wk C75 treatment model for diet-induced obese (DIO) mice to investigate the central and peripheral effects of C75 on gene expression.

View Article and Find Full Text PDF

High levels of fatty acid synthase (FAS) have been found in cancer precursor lesions of the colon, stomach, esophagus, oral cavity, prostate, and breast. Inhibition of FAS with C75 has led to a significant antitumor effect in both human breast and prostate cancer xenografts. Recently, HER2/neu, which has also been identified in preneoplastic breast lesions, has been shown to regulate FAS expression through the PI3K/Akt signal transduction pathway rendering them susceptible to FAS inhibition.

View Article and Find Full Text PDF

Energy homeostasis and feeding are regulated by the central nervous system. C75, a fatty acid synthase (FAS) inhibitor, causes weight loss and anorexia, implying a novel central nervous system pathway(s) for sensing energy balance. AMP-activated protein kinase (AMPK), a sensor of peripheral energy balance, is phosphorylated and activated when energy sources are low.

View Article and Find Full Text PDF

Obesity and its attendant disorders, such as type 2 diabetes, are global health problems. We previously reported that C75, an inhibitor of fatty acid synthase (FAS) and stimulator of carnitine palmitoyltransferase I (CPT I), caused anorexia and profound weight loss in lean and genetically obese mice. To approximate human obesity, we utilized a chronic C75 treatment model for diet-induced obese (DIO) mice.

View Article and Find Full Text PDF