This paper proposes a neural-network-based framework using Convolutional Neural Network and Long-Short Term Memory (CNN-LSTM) for detecting faults and recovering signals from Hall sensors in brushless DC motors. Hall sensors are critical components in determining the position and speed of motors, and faults in these sensors can disrupt their normal operation. Traditional fault-diagnosis methods, such as state-sensitive and transition-sensitive approaches, and fault-recovery methods, such as vector tracking observer, have been widely used in the industry but can be inflexible when applied to different models.
View Article and Find Full Text PDF