Interest in multifunctional polymer nanoparticles for targeted delivery of anti-cancer drugs has grown significantly in recent years. In this study, tumor-targeting echogenic polymer micelles were prepared from poly(ethylene glycol) methyl ether-alkyl carbonate (mPEG-AC) derivatives, and their potential in cancer therapy was assessed. Various mPEG derivatives with carbonate linkages were synthesized via an alkyl halide reaction between mPEG and alkyl chloroformate.
View Article and Find Full Text PDFPoly(vinyl chloride) (PVC) is widely used to produce various consumer goods, including food packaging, toys for children, building materials, and cosmetic products. However, despite their widespread use, phthalate plasticizers have been identified as endocrine disruptors, which cause adverse health effects, thus leading to increasing concerns regarding their migration from PVC products to the environment. This study proposed a method for rapidly measuring the migration of phthalates, particularly di(2-ethylhexyl) phthalate (DEHP), from PVC products to commonly encountered liquids.
View Article and Find Full Text PDFMulti-functional polymer nanoparticles have been widely utilized to improve cellular uptake and enhance therapeutic efficacy. In this study, it is hypothesized that the cellular uptake of poly(D,L-lactide-co-glycolide) (PLG) nanoparticles loaded with calcium carbonate minerals into adipocytes can be improved by covalent modification with nona-arginine (R ) peptide. It is further hypothesized that the internalization mechanism of R -modified PLG nanoparticles by adipocytes may be contingent on the concentration of R peptide present in the nanoparticles.
View Article and Find Full Text PDFThe demand for body fat reduction is increasing. However, conventional lipolytic approaches fail to control adipose tissue reduction and cause severe side effects in adjacent nonadipose tissues. A strategy to specifically reduce subcutaneous fat using adipocytolytic polymer nanoparticles in a minimally invasive manner is reported here.
View Article and Find Full Text PDFA new anticancer strategy to exploit abnormal metabolism of cancer cells rather than to merely control the drug release or rearrange the tumor microenvironment is reported. An antiglycolytic amphiphilic polymer, designed considering the unique metabolism of cancer cells (Warburg effect) and aimed at the regulation of glucose metabolism, is synthesized through chemical conjugation between glycol chitosan (GC) and phenylboronic acid (PBA). GC-PBA derivatives form stable micellar structures under physiological conditions and respond to changes in glucose concentration.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2023
Hydrogels have been frequently employed for three-dimensional (3D) printing, which is a promising tool for fabricating sophisticated structures useful in many biomedical applications. Ferrogels prepared by combining magnetic nanoparticles with hydrogels also have potential in biomedical engineering because of the responsiveness to a magnetic field and remotely controllable properties. However, typical ferrogels, especially those prepared from natural polysaccharides, have limitations concerning their mechanical properties and the fabrication method of complex structures owing to their rigid and brittle properties.
View Article and Find Full Text PDFCarbohydr Polym
November 2022
Hydrogels have been widely exploited as inks for three-dimensional (3D) bioprinting, a useful technique for building complex biological structures with living cells. However, hydrogels have inherently limited mechanical properties (e.g.
View Article and Find Full Text PDFStem cells exist and maintain their quiescence and pluripotency in stem cell niche. Here, we hypothesized that regulation of cell-cell interactions using a polymeric scaffold as synthetic extracellular matrix (ECM) could be critical in creating a hematopoietic stem cell (HSC) niche in vitro. Angiopoietin-1 (Ang1) binds to the tyrosine kinase receptor (Tie2), and regulation of the Tie2/Ang1 interaction is important in maintaining the quiescence of HSCs in vivo.
View Article and Find Full Text PDFChitosan and its derivatives have been extensively utilized in gene delivery applications because of their low toxicity and positively charged characteristics. However, their low solubility under physiological conditions often limits their application. Glycol chitosan (GC) is a derivative of chitosan that exhibits excellent solubility in physiological buffer solutions.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting technique is useful to fabricate constructs with functional and biological structures for various biomedical applications. Oxidized hyaluronate (OHA) and glycol chitosan (GC) can form autonomous self-healing hydrogels when adipic acid dihydrazide (ADH) is used. We demonstrate that hyaluronate-alginate hybrid (HAH) polymers can be used for secondary physical cross-linking of OHA/GC/ADH hydrogel with calcium ions after 3D printing.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and adipic acid dihydrazide (ADH) was achieved after damage. Interestingly, the addition of alginate (ALG) to the OHA/GC/ADH self-healing hydrogels was useful for the dual cross-linking system, which enhanced the structural stability of the gels without the loss of their self-healing capability.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2021
Hydrogels have been widely utilized in tissue engineering applications as functional and biological synthetic extracellular matrices (ECMs) can be created with gels. However, typical hydrogels cannot be exploited in 3D printing, especially in extrusion printing, unless post-cross-linking after printing is provided. Additionally, dynamic tissue scaffolds that can mimic ECM environments in the body have been demonstrated to be useful in tissue engineering.
View Article and Find Full Text PDFThe utilization of cell-manipulating techniques reveals information about biological behaviors suited to address a wide range of questions in the field of life sciences. Here, we introduced an on/off switchable physical stimuli technique that offers precise stimuli for reversible cell patterning to allow regulation of the future direction of adherent cellular behavior by leveraging enzymatically degradable alginate hydrogels with defined chemistry and topography. As a proof of concept, targeted muscle cells adherent to TCP exhibited a reshaped structure when the hydrogel-based physical stimuli were applied.
View Article and Find Full Text PDFHydrogel systems that show self-healing ability after mechanical damage are receiving increasing attention. However, self-healing hydrogels suitable for biomedical applications are limited owing to complex preparation methods. Furthermore, few studies have demonstrated the self-healing property of ferrogels.
View Article and Find Full Text PDFModulation of the viscoelastic properties of hydrogels is critical in tissue engineering applications. In the present study, a hyaluronate-alginate hybrid (HAH) was synthesized by introducing alginate to the hyaluronate backbone with varying molecular weights (700-2500 kDa), and HAH hydrogels were prepared in the presence of calcium ions at the same cross-linking density. The storage shear moduli of the HAH hydrogels increased with the concomitant increase in the molecular weight of hyaluronate in the HAH polymer.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is an aggressive tumor with no curative treatment. The tumor recurrence after resection often requires chemotherapy or radiation to delay the infiltration of tumor remnants. Intracerebral chemotherapies are preferentially being used to prevent tumor regrowth, but treatments remain unsuccessful because of the poor drug distribution in the brain.
View Article and Find Full Text PDFStimulus-responsive drug delivery systems have been widely used for many biomedical applications. Magnetic stimulation may serve as an important external stimulus for drug delivery. In this study, we hypothesized that the on-demand release of anticancer drugs could be achieved with a macroporous alginate ferrogel under the influence of magnetic stimulation to enhance therapeutic efficacy in a tumor-bearing mouse model.
View Article and Find Full Text PDFTissue engineering typically requires a use of scaffolds when delivering tissue-specific cells to be engineered. Hydrogels are frequently used as scaffolds, because their composition, structure, and function resemble the natural tissue extracellular matrix. In this study, hyaluronate-alginate hybrid (HAH) was synthesized by conjugating alginate (ALG) with the hyaluronate (HA) backbone using various types of linkers.
View Article and Find Full Text PDFDevelopment of biomaterial-based bioinks is critical for replacement and/or regeneration of tissues and organs by three-dimensional (3D) printing techniques. However, the number of 3D-printable biomaterials in practical use remains limited despite the rapid development of 3D printing techniques. Controlling the flow properties of bioinks and mechanical properties of the resultant printed objects is key considerations in the design of biomaterial-based bioinks for practical applications.
View Article and Find Full Text PDFHyaluronate-based hydrogels have been widely exploited as synthetic extracellular matrices in many tissue engineering applications, including cartilage tissue engineering. Hyaluronate-based hydrogels are typically prepared by chemical cross-linking reactions, in which chemical reagents may induce side effects, unless they are completely removed after the cross-linking reaction. We thus suggest the utilization of hybrid materials composed of hyaluronate as a main chain and alginate for physical cross-linking to simply form hydrogels in the presence of calcium ions under physiological conditions.
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2018
Delivery systems for therapeutic angiogenesis that deliver angiogenic factors to ischemic tissues have recently been fabricated. However, these systems are designed for surgical implantation or multiple local injections which can cause pain and potential physical burden in patients. Here, we propose a minimally invasive sequential nanoparticle-mediated delivery strategy for ischemic tissue using a murine hindlimb ischemic model.
View Article and Find Full Text PDFPurpose: Poly(D,L-lactide-co-glycolide) (PLG) nanoparticles containing doxorubicin and mineralized calcium carbonate were fabricated and their anti-tumor efficacy was tested using a neuroblastoma-bearing mouse model.
Methods: PLG nanoparticles were prepared by a double emulsion (water-in-oil-in-water; W/O/W) method. Calcium carbonate was mineralized within the PLG nanoparticles during the emulsion process.
Colloids Surf B Biointerfaces
July 2017
Control of stem cell fate and phenotype using biomimetic synthetic extracellular matrices (ECMs) is an important tissue engineering approach. Many studies have focused on improving cell-matrix interactions. However, proper control of cell-cell interactions using synthetic ECMs could be critical for tissue engineering, especially with undifferentiated stem cells.
View Article and Find Full Text PDFAlginate is a typical biomaterial that forms hydrogels in the presence of calcium ions and has often been utilized in tissue engineering approaches. However, it lacks biofunctionality in the form of interactions with cells and proteins. Hyaluronate, a main component of glycosaminoglycans, provides CD44-specific interactions with chondrocytes but typically requires chemical cross-linking agents to fabricate hydrogels, which may cause unexpected side effects in the body.
View Article and Find Full Text PDFBiological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles.
View Article and Find Full Text PDF