An indigenous microalga Chlorella vulgaris ESP-31 grown in an outdoor tubular photobioreactor with CO(2) aeration obtained a high oil content of up to 63.2%. The microalgal oil was then converted to biodiesel by enzymatic transesterification using an immobilized lipase originating from Burkholderia sp.
View Article and Find Full Text PDFThe growth and lipid productivity of an isolated microalga Chlorella vulgaris ESP-31 were investigated under different media and cultivation conditions, including phototrophic growth (NaHCO(3) or CO(2), with light), heterotrophic growth (glucose, without light), photoheterotrophic growth (glucose, with light) and mixotrophic growth (glucose and CO(2), with light). C. vulgaris ESP-31 preferred to grow under phototrophic (CO(2)), photoheterotrophic and mixotrophic conditions on nitrogen-rich medium (i.
View Article and Find Full Text PDFMicroalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.
View Article and Find Full Text PDFMicroalgae have the ability to mitigate CO(2) emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production.
View Article and Find Full Text PDFThe Scenedesmus obliquus FSP-3, a species with excellent potential for CO(2) capture and lipid production, was harvested using dispersed ozone flotation. While air aeration does not, ozone produces effective solid-liquid separation through flotation. Ozone dose applied for sufficient algal flotation is similar to those used in practical drinking waterworks.
View Article and Find Full Text PDFThe autotrophic growth of an oil-rich indigenous microalgal isolate, identified as Chlorella vulgaris C--C, was promoted by using engineering strategies to obtain the microalgal oil for biodiesel synthesis. Illumination with a light/dark cycle of 14/10 (i.e.
View Article and Find Full Text PDFRhamnolipid is one of the most effective and commonly used biosurfactant with wide industrial applications. Systematic strategies were applied to improve rhamnolipid (RL) production with a newly isolated indigenous strain Pseudomonas aeruginosa EM1 originating from an oil-contaminated site located in southern Taiwan. Seven carbon substrates and four nitrogen sources were examined for their effects on RL production.
View Article and Find Full Text PDF