Publications by authors named "Kuei-Chang Li"

Osteoporotic patients often suffer from bone fracture but its healing is compromised due to impaired osteogenesis potential of bone marrow-derived mesenchymal stem cells (BMSCs). Here we aimed to exploit adipose-derived stem cells from ovariectomized rats (OVX-ASCs) for bone healing. We unraveled that OVX-ASCs highly expressed miR-214 and identified 2 miR-214 targets: CTNNB1 (β-catenin) and TAB2.

View Article and Find Full Text PDF

Peripheral nerve regeneration requires coordinated functions of supporting cells (e.g. Schwann cells) and neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF), but nerve regeneration is usually far from complete.

View Article and Find Full Text PDF

Calvarial bone repair remains challenging for adults. Although adipose-derived stem cells (ASCs) hold promise to heal bone defects, use of ASCs for critical-size calvarial bone repair is ineffective. Stromal cell-derived factor 1 (SDF-1) is a chemokine capable of triggering stem cell migration.

View Article and Find Full Text PDF

Repairing large calvarial bone defects remains a challenging task. Previously, it was discovered that that miR-148b, when acting in concert with bone morphogenetic protein 2 (BMP-2), enhanced the osteogenesis of human adipose-derived stem cells (hASCs) and improved calvarial bone healing in nude mice. However, the molecular target of miR-148b remained elusive.

View Article and Find Full Text PDF

Metal nanowires are promising for their applications including electrical connectors, transparent conductive electrodes and conductive additives, but the use of metal nanowires as photothermal agents to convert light to heat has yet to be reported. Here we synthesized dispersible polyethylene glycol-coated (PEGylated) copper nanowires (CuNWs) and showed for the first time that PEGylated CuNWs were able to convert near-infrared (NIR, 808 nm) light into heat at a photothermal efficiency of 12.5%.

View Article and Find Full Text PDF

Fractures associated with osteoporosis are a worldwide health problem. To augment osteoporotic bone healing, we aimed to develop a cell/gene therapy approach in combination with miRNA manipulation. We unraveled aberrant overexpression of miR-140* and miR-214 in the bone marrow-derived MSCs isolated from ovariectomized (OVX) rats (OVX-BMSCs).

View Article and Find Full Text PDF

Adipose-derived stem cells (ASCs) hold promise for bone regeneration but possess inferior osteogenesis potential. Allotransplantation of ASCs engineered with the BMP2/VEGF-expressing baculoviruses into rabbits healed critical-size segmental bone defects. To translate the technology to clinical applications, we aimed to demonstrate massive bone healing in minipigs that more closely mimicked the clinical scenarios, using a new hybrid baculovirus system consisting of BacFLPo expressing the codon-optimized FLP recombinase (FLPo) and the substrate baculovirus harboring the transgene flanked by Frt sequences.

View Article and Find Full Text PDF

Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges.

View Article and Find Full Text PDF

We recently developed hybrid baculovirus (BV) vectors that exploited FLPo/Frt-mediated DNA minicircle formation. Engineering of adipose-derived stem cells (ASCs) with the FLPo/Frt-based BV vectors enabled prolonged transgene expression and, after cell implantation into rabbits, ameliorated cartilage regeneration and bone repair. To translate the hybrid BV one step further toward clinical applications, here we assessed the biosafety profiles of the hybrid BV-engineered human ASCs (hASCs) in vitro and evaluated the immune responses elicited by the engineered porcine ASCs (pASCs) in large animals.

View Article and Find Full Text PDF

Graphene oxide (GO) is a nanomaterial that provokes autophagy in CT26 colon cancer cells and confers antitumor effects. Here we demonstrated that both GO and the chemotherapy drug cisplatin (CDDP) induced autophagy but elicited low degrees of CT26 cell death. Strikingly, GO combined with CDDP (GO/CDDP) potentiated the CT26 cell killing via necrosis.

View Article and Find Full Text PDF

MicroRNA 122 (miR-122) is a tumor suppressor for hepatocellular carcinoma (HCC) but is lowly expressed in HCC cells. MiR-151 is aberrantly overexpressed in HCC cells and promotes HCC metastasis yet its roles on HCC tumorigenicity are unknown. To combat HCC tumorigenicity/metastasis, we developed Sleeping Beauty (SB)-based hybrid baculovirus (BV) vectors that expressed (i) miR-122 precursors (pre-miR-122), (ii) miR-151 sponges, or (iii) pre-miR-122 and miR-151 sponges.

View Article and Find Full Text PDF

Baculovirus is a promising vector for transducing numerous types of mammalian cells. We have developed hybrid baculovirus vectors and protocols for the efficient transduction of a variety of cell lines, primary cells and stem cells, including bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived stem cells (ASCs). The hybrid vector enables intracellular minicircle formation and prolongs transgene expression.

View Article and Find Full Text PDF

Repair of large calvarial bony defect remains a challenge for orthopedic surgeons. Since microRNAs (miRNAs) modulate the osteogenesis of osteoprogenitor cells, we aimed to engineer human adipose-derived stem cells (hASCs), a promising cell source for bone engineering, with miRNA-expressing baculovirus vectors. We constructed 4 baculoviruses each expressing 1 human miRNA (miR-26a, miR-29b, miR-148b, miR-196a) and verified that the miRNA-expressing baculovirus vectors augmented hASCs osteogenesis.

View Article and Find Full Text PDF

Graphene oxide (GO) is a nanomaterial with burgeoning bioapplications, while autophagy is implicated in cancer therapy. Although induction of autophagy by nanomaterials is reported, the underlying signaling mechanism in cancer cells and how this implicates the potential of GO in cancer therapy remain obscure. Here, it is shown that GO itself can induce the toll-like receptors (TLRs) responses and autophagy in cancer cells and confer antitumor effects in mice.

View Article and Find Full Text PDF

We previously showed that transplantation of adipose-derived stem cells (ASCs) engineered with hybrid baculovirus (BV) persistently expressing bone morphogenetic protein 2 (BMP2)/vascular endothelial growth factor (VEGF) into segmental defects in New Zealand White (NZW) rabbits led to successful defect reunion. By using microcomputed tomography and histology, here we further demonstrated that transplanting the hybrid BV-engineered ASCs into the massive defects (10 mm in length) at the femoral diaphysis of NZW rabbits resulted in trabecular bone formation in the interior via endochondral ossification and bone remodeling at 3 months post-transplantation. The progression of bone remodeling gave rise to the resorption of trabecular bone and conspicuous reconstruction of medullary cavity and cortical bone with lamellar structure at 8 months post-transplantation, hence conferring mechanical properties that were comparable to those of nonoperated femora.

View Article and Find Full Text PDF

Calvarial bone healing is difficult and grafts comprising adipose-derived stem cells (ASCs) and PLGA (poly(lactic-co-glycolic acid)) scaffolds barely heal rabbit calvarial defects. Although calvarial bone forms via intramembranous ossification without cartilage templates, it was suggested that chondrocytes/cartilages promote calvarial healing, thus we hypothesized that inducing ASCs chondrogenesis and endochondral ossification involving cartilage formation can improve calvarial healing. To evaluate this hypothesis and selectively induce osteogenesis/chondrogenesis, rabbit ASCs were engineered to express the potent osteogenic (BMP2) or chondrogenic (TGF-β3) factor, seeded into either apatite-coated PLGA or gelatin sponge scaffolds, and allotransplanted into critical-size calvarial defects.

View Article and Find Full Text PDF

Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.

View Article and Find Full Text PDF

Baculovirus (BV) is a promising gene vector but mediates transient expression. To prolong the expression, we developed a binary system whereby the transgene in the substrate BV was excised by the recombinase (ΦC31o, Cre or FLPo) expressed by a second BV and recombined into smaller minicircle. The recombination efficiency was lower by ΦC31o (≈40-75%), but approached ≈90-95% by Cre and FLPo in various cell lines and stem cells [e.

View Article and Find Full Text PDF

Baculovirus holds promise for genetic modification of adipose-derived stem cells (ASCs) and bone engineering. To explore the immune responses during bone healing and the cell fate, ASCs were mock-transduced (Mock group), transduced with the baculovirus transiently expressing growth factors promoting osteogenesis (BMP2) or angiogenesis (VEGF) (S group), or transduced with hybrid baculoviruses persistently expressing BMP2/VEGF (L group). After allotransplantation into massive femoral defects in rabbits, these 3 groups triggered similar degrees of transient inflammatory response (e.

View Article and Find Full Text PDF