Depression is one of the most severe sequelae of COVID-19, with major depressive disorder often characterized by disruption in white matter (WM) connectivity stemming from changes in brain myelination. This study aimed to quantitatively assess brain myelination in clinically diagnosed post-COVID depression (PCD) using the recently proposed MRI method, macromolecular proton fraction (MPF) mapping. The study involved 63 recovered COVID-19 patients (52 mild, 11 moderate, and 2 severe) at 13.
View Article and Find Full Text PDFIn this article, the impact of radiofrequency electromagnetic field (RF-EMF) exposure from a simulated base station for the 5G New Radio (5G NR) telecommunication on rats was studied. The base station affects all age groups of the population, thus, for the first time, the experiment was conducted on male Wistar rats of three different ages (juvenile, adult, and presenile). The base station exposure parameters were chosen according to ICNIRP recommendations for limiting the exposure to radiofrequency electromagnetic field: frequency 2.
View Article and Find Full Text PDF: Depression and cognitive impairment are recognized complications of COVID-19. This study aimed to assess cognitive performance in clinically diagnosed post-COVID depression (PCD, n = 25) patients using neuropsychological testing. : The study involved 71 post-COVID patients with matched control groups: recovered COVID-19 individuals without complications (n = 18) and individuals without prior COVID-19 history (n = 19).
View Article and Find Full Text PDFAge-related myelination decrease is considered one of the likely mechanisms of cognitive decline. The present preliminary study is based on the longitudinal assessment of global and regional myelination of the normal adult human brain using fast macromolecular fraction (MPF) mapping. Additional markers were age-related changes in white matter (WM) hyperintensities on FLAIR-MRI and the levels of anti-myelin autoantibodies in serum.
View Article and Find Full Text PDFTraditionally histology is the gold standard for the validation of imaging experiments. Matching imaging slices and histological sections and the precise outlining of corresponding tissue structures are difficult. Challenges are based on differences in imaging and histological slice thickness as well as tissue shrinkage and alterations after processing.
View Article and Find Full Text PDFRemyelination is a key process enabling post-stroke brain tissue recovery and plasticity. This study aimed to explore the feasibility of demyelination and remyelination monitoring in experimental stroke from the acute to chronic stage using an emerging myelin imaging biomarker, macromolecular proton fraction (MPF). After stroke induction by transient middle cerebral artery occlusion, rats underwent repeated MRI examinations during 85 days after surgery with histological endpoints for the animal subgroups on the 7th, 21st, 56th, and 85th days.
View Article and Find Full Text PDF(1) Background: Although myelin disruption is an integral part of ischemic brain injury, it is rarely the subject of research, particularly in animal models. This study assessed for the first time, myelin and oligodendrocyte loss in a three-vessel model of global cerebral ischemia (GCI), which causes hippocampal damage. In addition, we investigated the relationships between demyelination and changes in microglia and astrocytes, as well as oligodendrogenesis in the hippocampus; (2) Methods: Adult male Wistar rats ( = 15) underwent complete interruption of cerebral blood flow for 7 min by ligation of the major arteries supplying the brain or sham-operation.
View Article and Find Full Text PDFThis study aimed at assessing the regenerative effect of p-tyrosol in transient global cerebral ischemia modeled in adult male Wistar rats by reversible occlusion of the three major vessels originating from the aortic arch and supplying the blood to the brain. p-Tyrosol was administered intraperitoneally in a dose of 20 mg/kg over 10 days after surgery. The death of NeuN mature neurons and the number of newly formed DCX neurons were assessed in the CA1 field of the hippocampus that is highly susceptible to damage in this model.
View Article and Find Full Text PDFA recent MRI method, fast macromolecular proton fraction (MPF) mapping, was used to quantify demyelination in the transient middle cerebral artery occlusion (MCAO) rat stroke model. MPF and other quantitative MRI parameters (T, T, proton density, and apparent diffusion coefficient) were compared with histological and immunohistochemical markers of demyelination (Luxol Fast Blue stain, (LFB)), neuronal loss (NeuN immunofluorescence), axonal loss (Bielschowsky stain), and inflammation (Iba1 immunofluorescence) in three animal groups ( n = 5 per group) on the 1st, 3rd, and 10th day after MCAO. MPF and LFB optical density (OD) were significantly reduced in the ischemic lesion on all days after MCAO relative to the symmetrical regions of the contralateral hemisphere.
View Article and Find Full Text PDFA selective serotonin reuptake inhibitor, fluoxetine, has recently attracted a significant interest as a neuroprotective therapeutic agent. There is substantial evidence of improved neurogenesis under fluoxetine treatment of brain ischemia in animal stroke models. We studied long-term effects of fluoxetine treatment on hippocampal neurogenesis, neuronal loss, inflammation, and functional recovery in a new model of global cerebral ischemia (GCI).
View Article and Find Full Text PDF