Publications by authors named "Kucherenko D"

β-Catenin signaling pathway regulates cardiomyocytes proliferation and differentiation, though its involvement in metabolic regulation of cardiomyocytes remains unknown. We used one-day-old mice with cardiac-specific knockout of β-catenin and neonatal rat ventricular myocytes treated with β-catenin inhibitor to investigate the role of β-catenin metabolism regulation in perinatal cardiomyocytes. Transcriptomics of perinatal β-catenin-ablated hearts revealed a dramatic shift in the expression of genes involved in metabolic processes.

View Article and Find Full Text PDF

Electrochemical enzyme-based biosensors are one of the largest and commercially successful groups of biosensors. Integration of nanomaterials in the biosensors results in significant improvement of biosensor sensitivity, limit of detection, stability, response rate and other analytical characteristics. Thus, new functional nanomaterials are key components of numerous biosensors.

View Article and Find Full Text PDF

The work was aimed at the development of a biosensor array for the simultaneous determination of six solutes (glutamate, glucose, choline, acetylcholine, lactate, and pyruvate) in aqueous solutions. Enzymes selective for these substrates were immobilized on the surface of amperometric platinum disc electrodes and served as bioselective elements of a biosensor array. Direct enzymatic analysis by the developed biosensors provided high sensitivity to the tested substrates (limits of detection were 1-5 μM).

View Article and Find Full Text PDF

An excess of the excitatory neurotransmitter, glutamate, in the synaptic cleft during hypoxia/ischemia provokes development of neurotoxicity and originates from the reversal of Na-dependent glutamate transporters located in the plasma membrane of presynaptic brain nerve terminals. Here, we have optimized an electrochemical glutamate biosensor using glutamate oxidase and developed a biosensor-based methodological approach for analysis of rates of tonic, exocytotic and transporter-mediated glutamate release from isolated rat brain nerve terminals (synaptosomes). Changes in the extracellular glutamate concentrations from 11.

View Article and Find Full Text PDF

In this work, we developed a new amperometric biosensor for glutamate detection using a typical method of glutamate oxidase (GlOx) immobilization via adsorption on silicalite particles. The disc platinum electrode (d = 0.4 mm) was used as the amperometric sensor.

View Article and Find Full Text PDF

The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used).

View Article and Find Full Text PDF

Glutamate is the major excitatory neurotransmitter in the central nervous system, which is involved in the main aspects of normal brain functioning. High-affinity Na(+)-dependent glutamate transporters is key proteins, which transport extracellular glutamate to the cytoplasm of nerve cells, thereby preventing continuous activation of glutamate receptors, and thus the development of neurotoxicity. Disturbance in glutamate uptake is involved in the pathogenesis of major neurological disorders.

View Article and Find Full Text PDF