Publications by authors named "Kucharska I"

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF
Article Synopsis
  • Connexins (Cxs) are integral membrane proteins that form hemichannels and gap junctions, enabling communication between cells and their environment, which is vital for development and response to diseases.
  • Abnormal functioning of these channels can lead to various health issues, including inflammation, skin diseases, deafness, and heart problems.
  • Recent studies using high-resolution imaging techniques have revealed detailed structures of Cxs, uncovering mechanisms of channel regulation and potential future research directions to explore their functions in cellular communication.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers used cryo-electron microscopy (cryoEM) to analyze the structure of the adenosine A receptors (AAR) when bound to the G protein Gs, revealing notable differences compared to previous models.
  • The binding site of AAR-Gs showed similarities to earlier structures, but the presence of Gβ created a larger interior space within the complex, leading to fewer interactions with the Gs α protein.
  • Gβγ was found to be significantly more effective in facilitating AAR-dependent GTPγS binding compared to its analog, suggesting that Gβ may enhance Gs α's activity through positive allosteric modulation.
View Article and Find Full Text PDF

Unlabelled: Circulating sexual stages of can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies (Abs) can efficiently block parasite transmission. In search for naturally acquired Ab targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gamete and gametocyte extract.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments.

View Article and Find Full Text PDF

Subunit vaccines typically require co-administration with an adjuvant to elicit protective immunity, adding development hurdles that can impede rapid pandemic responses. To circumvent the need for adjuvant in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine, we engineer a thermostable immunotargeting vaccine (ITV) that leverages the pan-HLA-DR monoclonal antibody 44H10 to deliver the viral spike protein receptor-binding domain (RBD) to antigen-presenting cells. X-ray crystallography shows that 44H10 binds to a conserved epitope on HLA-DR, providing the basis for its broad HLA-DR reactivity.

View Article and Find Full Text PDF

The HIV-1 capsid is a fullerene cone made of quasi-equivalent hexamers and pentamers of the viral CA protein. Typically, quasi-equivalent assembly of viral capsid subunits is controlled by a molecular switch. Here, we identify a Thr-Val-Gly-Gly motif that modulates CA hexamer/pentamer switching by folding into a 3 helix in the pentamer and random coil in the hexamer.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on monoclonal antibody (mAb) 850, which has a strong affinity for NANP motifs and significantly inhibits P. falciparum in lab tests, as well as reduces liver parasite burden in mouse models.
  • * Analysis reveals that mAb 850 can bind multiple copies to PfCSP at once, enhancing its effectiveness through interactions among the antibodies themselves, contributing to a better understanding of the B cell response against malaria.
View Article and Find Full Text PDF

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein.

View Article and Find Full Text PDF

Malaria is a global health burden, with (Pf) and (Pv) responsible for the majority of infections worldwide. Circumsporozoite protein (CSP) is the most abundant protein on the surface of sporozoites, and antibodies targeting the central repeat region of CSP can prevent parasite infection. Although much has been uncovered about the molecular basis of antibody recognition of the PfCSP repeats, data remains scarce for PvCSP.

View Article and Find Full Text PDF

Appropriate waste management is increasingly relevant due to environmental and infectious disease transmission concerns. An anonymous observational cross-sectional study was conducted from 2013-2017 of 262 tattooists and 824 beauticians throughout Poland. Knowledge, attitudes, behavior, and compliance with blood-borne infection controls and correct waste disposal were assessed.

View Article and Find Full Text PDF

Cluster of differentiation-22 (CD22) belongs to the sialic acid-binding immunoglobulin (Ig)-like lectin family of receptors that is expressed on the surface of B cells. It has been classified as an inhibitory coreceptor for the B-cell receptor because of its function in establishing a baseline level of B-cell inhibition. The restricted expression of CD22 on B cells and its inhibitory function make it an attractive target for B-cell depletion in cases of B-cell malignancies.

View Article and Find Full Text PDF

SARS-CoV-2, the virus responsible for COVID-19, has caused a global pandemic. Antibodies can be powerful biotherapeutics to fight viral infections. Here, we use the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers.

View Article and Find Full Text PDF

The variety of current cosmetic procedures has increased the potential risks of adverse events and infections. In a nationwide cross-sectional study (2013-2015), we assessed the aspects of infection risk in cosmetic services. An anonymous voluntary questionnaire survey was conducted among 813 employees of cosmetic establishments in Poland.

View Article and Find Full Text PDF

Plasmodium sporozoites express circumsporozoite protein (CSP) on their surface, an essential protein that contains central repeating motifs. Antibodies targeting this region can neutralize infection, and the partial efficacy of RTS,S/AS01 - the leading malaria vaccine against (Pf) - has been associated with the humoral response against the repeats. Although structural details of antibody recognition of PfCSP have recently emerged, the molecular basis of antibody-mediated inhibition of other Plasmodium species via CSP binding remains unclear.

View Article and Find Full Text PDF

Across cultures and generations, people have tattooed their bodies. Although blood-borne infections from tattooing have been reduced, certain service aspects remain improperly managed. We assessed the infection risks associated with tattooing by conducting a cross-sectional study (2013-2014) in Poland using an anonymous questionnaire survey.

View Article and Find Full Text PDF

Pathogenic clostridial species secrete potent toxins that induce severe host tissue damage. Paeniclostridium sordellii lethal toxin (TcsL) causes an almost invariably lethal toxic shock syndrome associated with gynecological infections. TcsL is 87% similar to C.

View Article and Find Full Text PDF

De novo protein design has been successful in expanding the natural protein repertoire. However, most de novo proteins lack biological function, presenting a major methodological challenge. In vaccinology, the induction of precise antibody responses remains a cornerstone for next-generation vaccines.

View Article and Find Full Text PDF

The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process.

View Article and Find Full Text PDF

The outer membrane (OM) of Gram-negative bacteria is composed of lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The outer membrane protein H (OprH) of Pseudomonas aeruginosa provides an increased stability to the OMs by directly interacting with LPS. Here we report the influence of various P.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic human pathogen causing pneumonias that are particularly severe in cystic fibrosis and immunocompromised patients. The outer membrane (OM) of P. aeruginosa is much less permeable to nutrients and other chemical compounds than that of Escherichia coli.

View Article and Find Full Text PDF

Protein engineering is an important tool for the design of proteins with novel and desirable features. Templates from the protein databank (PDB) are often used as initial models that can be modified to introduce new properties. We examine whether it is possible to reconnect a protein in a manner that generates a new topology yet preserves its structural integrity.

View Article and Find Full Text PDF

OprG is an outer membrane protein of Pseudomonas aeruginosa whose function as an antibiotic-sensitive porin has been controversial and not well defined. Circumstantial evidence led to the proposal that OprG might transport hydrophobic compounds by using a lateral gate in the barrel wall thought to be lined by three conserved prolines. To test this hypothesis and to find the physiological substrates of OprG, we reconstituted the purified protein into liposomes and found it to facilitate the transport of small amino acids such as glycine, alanine, valine, and serine, which was confirmed by Pseudomonas growth assays.

View Article and Find Full Text PDF

Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer.

View Article and Find Full Text PDF