Publications by authors named "Kucera I"

Article Synopsis
  • The use of 3D intraoperative models in surgeries involving foreign bodies in the head and neck helps surgeons assess and verify the size, shape, and quantity of these bodies for effective removal and wound revision.
  • The case study highlights a 34-year-old woman who had multiple foreign bodies, specifically dental enamel, lodged in her neck tissues following an injury, illustrating the complexity of such surgical scenarios.
  • 3D printed models of the foreign bodies were utilized during the surgery, allowing surgeons to compare them directly with the actual foreign bodies removed, ensuring greater surgical accuracy and reducing the risk of complications.
View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) are intracellular biopolymers that microorganisms use for energy and carbon storage. They are mechanically similar to petrochemical plastics when chemically extracted, but are completely biodegradable. While they have potential as a replacement for petrochemical plastics, their high production cost using traditional carbon sources remains a significant challenge.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) remains a formidable diagnosis in need of new treatment paradigms. In this work, we elucidated an opportunity for therapeutic synergy in DLBCL by reactivating tumor protein p53 with a stapled peptide, ATSP-7041, thereby priming cells for apoptosis and enhancing their sensitivity to BCL-2 family modulation with a BH3-mimetic, ABT-263 (navitoclax). While this combination was highly effective at activating apoptosis in DLBCL , it was highly toxic , resulting in a prohibitively narrow therapeutic window.

View Article and Find Full Text PDF

The Pden_5119 protein oxidizes NADH with oxygen under mediation by the bound flavin mononucleotide (FMN) and may be involved in the maintenance of the cellular redox pool. In biochemical characterization, the curve of the pH-rate dependence was bell-shaped with pK = 6.6 and pK = 9.

View Article and Find Full Text PDF

ArsH is encoded by two identical genes located in two distinct putative arsenic resistance () operons. -produced recombinant N-His-ArsH was characterized both structurally and kinetically. The X-ray structure of ArsH revealed a flavodoxin-like domain and motifs for the binding of flavin mononucleotide (FMN) and reduced nicotinamide adenine dinucleotide phosphate (NADPH).

View Article and Find Full Text PDF

has a branched electron transport chain with three terminal oxidases transferring electrons to molecular oxygen, namely -type and -type cytochrome oxidases and -type ubiquinol oxidase. In the present study, we focused on strains expressing only one of these enzymes. The competition experiments showed that possession of -type oxidase confers significant fitness advantage during oxygen-limited growth and supports the biofilm lifestyle.

View Article and Find Full Text PDF

is a strictly respiring bacterium with a core respiratory chain similar to that of mammalian mitochondria. As such, it continuously produces and has to cope with superoxide and other reactive oxygen species. In this work, the effects of artificially imposed superoxide stress on electron transport were examined.

View Article and Find Full Text PDF

Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation.

View Article and Find Full Text PDF

Ferric reductase B (FerB) is a flavin mononucleotide (FMN)-containing NAD(P)H:acceptor oxidoreductase structurally close to the Gluconacetobacter hansenii chromate reductase (ChrR). The crystal structure of ChrR was previously determined with a chloride bound proximal to FMN in the vicinity of Arg101, and the authors suggested that the anionic electron acceptors, chromate and uranyl tricarbonate, bind similarly. Here, we identify the corresponding arginine residue in FerB (Arg95) as being important for the reaction of FerB with superoxide.

View Article and Find Full Text PDF

Unlabelled: The Pden_2689 gene encoding FerA, an NADH:flavin oxidoreductase required for growth of Paracoccus denitrificans under iron limitation, was cloned and overexpressed as a C-terminally His6-tagged derivative. The binding of substrates and products was detected and quantified by isothermal titration calorimetry and fluorometric titration. FerA binds FMN and FAD with comparable affinity in an enthalpically driven, entropically opposed process.

View Article and Find Full Text PDF

3DLC protein- and peptide-fractionation technique combined with iTRAQ-peptide labeling and Orbitrap mass spectrometry was employed to quantitate Paracoccus dentirificans total proteome with maximal coverage. This resulted in identification of 24,948 peptides representing 2627 proteins (FDR<0.01) in P.

View Article and Find Full Text PDF

FerB is a cytoplasmic flavoprotein from the soil bacterium Paracoccus denitrificans with a putative role in defense against oxidative stress. To further explore this hypothesis, we compared protein variations upon methyl viologen treatment in wild-type and FerB mutant strains by a quantitative proteomic analysis based on iTRAQ-3DLC-MS/MS analysis. The proteins showing the most prominent increase in abundance were assigned to carbon fixation and sulfur assimilatory pathways.

View Article and Find Full Text PDF

Unlabelled: FerB is a flavin mononucleotide (FMN)-containing

Nad(p)h: acceptor oxidoreductase of unknown function that is found in the cytoplasm of the bacterium Paracoccus denitrificans. Based on measurements of fluorescence anisotropy, we report here that recombinant FerB readily binds to artificial membrane vesicles. If ubiquinone is incorporated into the membrane, FerB catalyzes its conversion to ubihydroquinone, which may be followed fluorimetrically (with ferricyanide and pyranine entrapped inside the liposomes) or by HPLC.

View Article and Find Full Text PDF

FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations.

View Article and Find Full Text PDF

A comparative examination of reduced methyl [MV·](+) and benzyl [BV·](+) viologens (as artificial electron donors for quantitative estimation of the respiratory periplasmic (Nap) and membrane-embedded (Nar) nitrate reductases) using a newly constructed nap mutant strain of Paracocccus denitrificans was done. The activity with [MV·](+) was high in whole-cell assays, confirming that this compound donates electrons to Nar. Initial rates of the more lipophilic [BV·](+) were considerably lower, which was interpreted to be caused by an inhibition of the active transport of nitrate into the cells.

View Article and Find Full Text PDF

Paracoccus denitrificans cells undergo changes in protein composition upon exposure to azide, a known activator of the fumarate-nitrate reduction (FNR)-type transcription factor NarR. One of the most prominent protein species inducible by azide is a Fe/Mn-family superoxide dismutase (SOD). Azide induces SOD at protein, mRNA transcript, and enzyme activity levels in the aerobically growing cells.

View Article and Find Full Text PDF

The homodimeric flavoprotein FerB of Paracoccus denitrificans catalyzed the reduction of chromate with NADH as electron donor. When present, oxygen was reduced concomitantly with chromate. The recombinant enzyme had a maximum activity at pH 5.

View Article and Find Full Text PDF

The flavin-dependent enzyme FerB from Paracoccus denitrificans reduces a broad range of compounds, including ferric complexes, chromate and most notably quinones, at the expense of the reduced nicotinamide adenine dinucleotide cofactors NADH or NADPH. Recombinant unmodified and SeMet-substituted FerB were crystallized under similar conditions by the hanging-drop vapour-diffusion method with microseeding using PEG 4000 as the precipitant. FerB crystallized in several different crystal forms, some of which diffracted to approximately 1.

View Article and Find Full Text PDF

The switch from aerobic to anaerobic respiration in the bacterium Paracoccus denitrificans is orchestrated by the action of three FNR-type transcription regulators FnrP, NNR and NarR, which are sensors for oxygen, nitric oxide and nitrite, respectively. In this work, we analyzed the protein composition of four strains (wild type, FnrP-, NNR- and NarR-mutant strains) grown aerobically, semiaerobically and semiaerobically in the presence of nitrate to discover the global role of FNR-family transcription regulators using proteomics, with data validation at the transcript and genome levels. Expression profiles were acquired using two-dimensional gel electrophoresis for 737 protein spots, in which 640 proteins were identified using mass spectrometry.

View Article and Find Full Text PDF

The Goeckerman regimen (GR) for the treatment of psoriasis comprises dermal application of crude coal tar (polycyclic aromatic hydrocarbons, PAHs) and exposure to ultraviolet radiation (UVR). PAHs and UVR are mutagenic and carcinogenic agents. We evaluated dermal absorption of PAHs as well as the mutagenic and genotoxic effects of GR in 16 children with psoriasis, by determining levels of 1-hydroxypyrene (1-OHP), 1-,2-,3-,4-hydroxyphenanthrene, (1-OHPhe, 2-OHPhe, 3-OHPhe, and 4-OHPhe), urinary mutagenicity (Salmonella mutagenicity assay, Ames test) and numbers of chromosomal aberrations in peripheral lymphocytes (CA), in urine and/or blood, before and after GR.

View Article and Find Full Text PDF

FerB is a flavoenzyme capable of reducing quinones, ferric complexes and chromate. Its expression in Escherichia coli as a hexahistidine fusion resulted in a functional product only when the tag was placed on the C-terminus. The molecular mass values estimated by gel permeation chromatography were compatible with the existence of either dimer or trimer, whereas the light scattering data, together with cross-linking experiments that yielded exclusively monomer and dimer bands on dodecyl sulfate-polyacrylamide gels, strongly supported a dimeric nature of both native and tagged form of FerB.

View Article and Find Full Text PDF

The main aim of this work was to demonstrate the applicability of capillary zone electrophoresis in combination with field enhanced sample stacking in targeted metabolome analyses of adenine nucleotides--AMP, ADP, ATP, coenzymes NAD(+), NADP(+) and their reduced forms in Paracoccus denitrificans. Sodium carbonate/hydrogencarbonate buffer (100 mM, pH 9.6) with the addition of beta-CD at a concentration of 10 mM was found to be an effective BGE for their separation within 20 min.

View Article and Find Full Text PDF

Based on N-terminal sequences obtained from the purified cytoplasmic ferric reductases FerA and FerB, their corresponding genes were identified in the published genome sequence of Paracoccus denitrificans Pd1222. The ferA and ferB genes were cloned and individually inactivated by insertion of a kanamycin resistance marker, and then returned to P. denitrificans for exchange with their wild-type copies.

View Article and Find Full Text PDF

The ferric reductase B (FerB) protein of Paracoccus denitrificans exhibits activity of an NAD(P)H: Fe(III) chelate, chromate and quinone oxidoreductase. Sequence analysis places FerB in a family of soluble flavin-containing quinone reductases. The enzyme reduces a range of quinone substrates, including derivatives of 1,4-benzoquinone and 1,2- and 1,4-naphthoquinone, via a ping-pong kinetic mechanism.

View Article and Find Full Text PDF