Curr Res Neurobiol
February 2022
Neurons respond rapidly to extracellular stimuli by activating signaling pathways that modulate the function of already synthetized proteins. Alternatively, signal transduction to the cell nucleus induces synthesis of proteins required for long-lasting adaptations. These complementary strategies are necessary for neuronal plasticity processes that underlie, among other functions, the formation of memories.
View Article and Find Full Text PDFAge-related cognitive decline preferentially targets long-lasting episodic memories that require intact hippocampal function. Memory traces (or engrams) are believed to be encoded within the neurons activated during learning (neuronal ensembles), and recalled by reactivation of the same population. However, whether engram reactivation dictates memory performance late in life is not known.
View Article and Find Full Text PDFUnderstanding how we learn and remember has been a long-standing question in neuroscience. Technological developments of the past 15 years have allowed for dramatically increased access to the neurons that hold the physical representation of memory, also known as a memory trace or engram. Such developments have tremendously facilitated advancement of the memory field, since they made possible interrogation of the cellular and molecular mechanisms underlying memory formation with unprecedented cellular specificity.
View Article and Find Full Text PDFLong-term memory formation is supported by functional and structural changes of neuronal networks, which rely on de novo gene transcription and protein synthesis. The modulation of the neuronal transcriptome in response to learning depends on transcriptional and post-transcriptional mechanisms. DNA methylation writers and readers regulate the activity-dependent genomic program required for memory consolidation.
View Article and Find Full Text PDFStressful and emotionally arousing experiences activate hormonal and brain systems that create strong memories. Extensive evidence indicates that this strengthening effect involves the synergistic action of both norepinephrine and glucocorticoid hormones. This tight regulation of emotional memories is normally highly adaptive and pivotal for survival; yet, aberrant memory processing of stressful events is a major risk factor for the development of stress-related psychopathology.
View Article and Find Full Text PDFAging is associated with the progressive decay of cognitive function. Hippocampus-dependent processes, such as the formation of spatial memory, are particularly vulnerable to aging. Currently, the molecular mechanisms responsible for age-dependent cognitive decline are largely unknown.
View Article and Find Full Text PDFMemories are encoded by memory traces or engrams, represented within subsets of neurons that are synchronously activated during learning. However, the molecular mechanisms that drive engram stabilization during consolidation and consequently ensure its reactivation by memory recall are not fully understood. In this study we manipulate, during memory consolidation, the levels of the de novo DNA methyltransferase 3a2 (Dnmt3a2) selectively within dentate gyrus neurons activated by fear conditioning.
View Article and Find Full Text PDFAge-related memory loss is observed across multiple mammalian species and preferentially affects hippocampus-dependent memory. Memory impairments are characterized by accelerated decay of spatial memories. Nevertheless, the molecular mechanisms underlying these deficits are still largely unknown.
View Article and Find Full Text PDFMethyl CpG binding protein 2 (MeCP2) was first identified as a nuclear protein with a transcriptional repressor role that recognizes DNA methylation marks. MeCP2 has a well-established function in neurodevelopment, as evidenced by the severe neurological impairments characteristic of the Rett syndrome (RTT) pathology and the MeCP2 duplication syndrome (MDS), caused by loss or gain of MeCP2 function, respectively. Research aimed at the underlying pathophysiological mechanisms of RTT and MDS has significantly advanced our understanding of MeCP2 functions in the nervous system.
View Article and Find Full Text PDFMeCP2 is required both during postnatal neurodevelopment and throughout the adult life for brain function. Although it is well accepted that MeCP2 in the maturing nervous system is critical for establishing normal development, the functions of MeCP2 during adulthood are poorly understood. Particularly, the requirement of hippocampal MeCP2 for cognitive abilities in the adult is not studied.
View Article and Find Full Text PDF