Publications by authors named "Kubo W"

A hyperbolic metamaterial absorber has great potential for improving the performance of photo-thermoelectric devices targeting heat sources owing to its broadband absorption. However, optimizing its geometry requires considering numerous parameters to achieve absorption that aligns with the radiation spectrum. Here, we compare three algorithms using deep reinforcement learning for the optimization of a hyperbolic metamaterial absorber.

View Article and Find Full Text PDF

Metasurfaces are artificial thin materials that achieve optical thickness through thin geometrical structure. This feature of metasurfaces results in unprecedented benefits for enhancing the performance of optoelectronic devices. In this study, we report that this metasurface feature is also essential to drive photo-thermoelectric conversion, which requires the accumulation of thermal energy and effective heat conduction.

View Article and Find Full Text PDF

We insert two probes in the upstream and the downstream regions with respect to the electron cyclotron resonance (ECR) zone which is formed at the center of mirror fields. We measure simultaneously plasma parameters in those regions by each of them under the same operating condition. We measure ion saturation currents I and electron energy distribution functions at two positions.

View Article and Find Full Text PDF

The thermal gradient across a thermoelectric device is the key to convert heat energy into electricity. Here, we propose a metamaterial perfect absorber (MPA) that increases the thermal gradient across a thermoelectric device by local heat generation through absorbing thermal radiation emitted from an infinite-size blackbody radiator. The MPA, when attached on top of a bismuth telluride thermoelectric device, generates local heat that propagates to the device, resulting in an additional thermal gradient.

View Article and Find Full Text PDF

Nanophotonic particle manipulation exploits unique light shaping capabilities of nanophotonic devices to trap, guide, rotate and propel particles in microfluidic channels. Recent introduction of metalens into microfluidics research demonstrates the new capability of using nanophotonics devices for far-field optical manipulation. In this work we demonstrate, via numerical simulation, the first tunable metalens tweezers that function under dual-beam illumination.

View Article and Find Full Text PDF

For the purpose of future visualization of the flow field in superfluid helium-4, clusters of the triplet state excimer He are generated along the micro-scale recoil tracks of the neutron-absorption reaction n + He → T + p. This reaction is induced by neutron irradiation of the He fraction contained in natural isotopic abundance liquid helium with neutron beams either from the Japan Proton Accelerator Research Complex, Materials and Life Science Experimental Facility (JPARC)/Materials and Life Science Experimental Facility or from the Kyoto University Institute for Integrated Radiation and Nuclear Science. These He clusters are expected to be ideal tracers of the normal-fluid component in superfluid helium with several advantageous properties.

View Article and Find Full Text PDF

Electron cyclotron resonance ion sources (ECRISs) are widely applied for ion beam applications, e.g., plasma processing, cancer therapy, and ion engine of an artificial satellite.

View Article and Find Full Text PDF

How to produce multicharged ions efficiently on an electron cyclotron resonance ion source (ECRIS) has been investigated at Osaka University. Notably, in recent years, we have focused on heating by new resonance superimposing to electron cyclotron resonance (ECR) plasma. To evaluate its efficiency, we need to know the maximum efficiency of heating with ECR alone, and then, further optimization of ECR heating is required.

View Article and Find Full Text PDF

Electron cyclotron resonance ion sources (ECRISs) are used in various fields such as accelerator physics, engineering, cancer therapy, and ion engines in the satellite. We are aiming to improve the production of multicharged ions efficiently at the point of view from the length of multipole magnets and vacuum conditions in the ECRIS. The diameter of the connection pipe between the main chamber and diffusion pump was made larger to improve vacuum conductance.

View Article and Find Full Text PDF

We have considered the accessibility condition of electromagnetic and electrostatic waves propagating in an electron cyclotron resonance (ECR) ion source (ECRIS) plasma and then investigated experimentally their correspondence relationships with production of multicharged ions. It has been clarified that there exists an efficient configuration of ECR zones for producing multicharged ion beams and has been suggested that a new resonance, i.e.

View Article and Find Full Text PDF

Vanadium oxide is a key sensing material for bolometric photodetection, thanks to its strong temperature dependence of resistivity close to room temperature. Here we demonstrate the photodetection of a stoichiometric vanadium dioxide thin film integrated with silver nanorods. The nanorods convert light into heat, consequently suppressing the resistivity of vanadium dioxide via localised surface plasmon resonance.

View Article and Find Full Text PDF

This paper presents a novel method employing the maximum likelihood estimation (MLE) technique alongside a nonlinear sensor response model to improve and extract more quantitative sensing results for localized surface plasmon resonance biosensors. The nonlinear response model treats the sensor response as a nonlinear function of the biomolecular adlayer thickness. This method makes use of the multiple resonance characteristic of nanocrescent structures in order to estimate the adlayer thickness and bulk refractive index (RI) change.

View Article and Find Full Text PDF

We present a novel approach to improve self-referenced sensing based on multiple-resonance nanorod structures. The method employs the maximum likelihood estimation (MLE) alongside a linear response model (LM), relating the sensor response (shifts in resonance wavelengths) to the changes due to surface binding and bulk refractive index. We also provide a solution to avoid repetitive simulations, that have been previously needed to determine the adlayer thickness sensitivity when measuring biological samples of different refractive indices.

View Article and Find Full Text PDF

This paper presents a simple and accurate method (the projection method) to improve the signal to noise ratio of localized surface plasmon resonance (LSPR). The nanostructures presented in the paper can be readily fabricated by nanoimprint lithography. The finite difference time domain method is used to simulate the structures and generate a reference matrix for the method.

View Article and Find Full Text PDF

An alkoxysilane with an alkyl chain is introduced as an alignment-controlling agent of a block-copolymer-templated mesostructured silica film. Use of the alkylalkoxysilane achieves the alignment of the mesochannels of a triblock-copolymer-templated film by an intermolecular interaction with a rubbing-treated polyimide film. Co-use of an alkoxysilane with a hydroxymethyl group as a hydrophobicity reducing agent improves the alignment close to that of the film prepared using an alkyl surfactant.

View Article and Find Full Text PDF

We present a novel concept for x-ray waveguiding based on electromagnetism in photonic crystals, using a waveguide consisting of a pair of claddings sandwiching a core with a periodic structure. By confining the x rays undergoing multiple interference in the core by total reflection, a characteristic waveguide mode whose field distribution matches the periodicity of the core is formed. The distinctively low propagation loss enables the single-mode propagation of x rays.

View Article and Find Full Text PDF

Crystallographic orientation of mesostructured silica films on a substrate drastically changes when the substrate is modified with an anisotropic surface. The [01] axis of a two-dimensional (2D) hexagonal structure of the film prepared on a polyimide surface using C(22)EO(20) as a structure-directing agent changes from perpendicular to parallel with respect to the substrate after a rubbing treatment of polyimide, which is accompanied by the simultaneous unidirectional alignment of the cylindrical pores in the plane of the film. The normal direction of the film is [21¯], which has never been observed in the mesostructured silica films reported so far including those with controlled in-plane alignment of the mesochannels.

View Article and Find Full Text PDF

Exceptionally strong Bragg diffraction from a mesoporous silica film is achieved by exposing the as-deposited film to vapor of chlorotrimethylsilane (Me(3)SiCl) before extracting the surfactant. The intensity of the X-ray diffraction peak increased 7 times after the surfactant removal and it approached 30% reflectivity. This large increase of diffraction intensity cannot be explained simply by the improved contrast of the electron density, and rearrangement of the pore wall during the Me(3)SiCl vapor treatment is suggested.

View Article and Find Full Text PDF

Mesoporous titania-silica composite films with highly aligned cylindrical pores are prepared by the sol-gel method using a substrate with structural anisotropy. The strong alignment effect of a rubbing-treated polyimide film on a substrate provides a narrow alignment distribution in the plane of the film regardless of the fast condensation rate of titania precursors. The collapse of the mesostructure upon the surfactant removal is effectively suppressed by the reinforcement of the pore walls with silica by exposing the as-deposited film to a vapor of a silicon alkoxide.

View Article and Find Full Text PDF

Free-standing, ultralong (up to several millimeters) nanobelts of gold, silver, and copper were fabricated by a template approach. Firstly, a metal nanofin array was prepared on a substrate via metal nanocoating of the template surface and selective removal of the metal top layer and template. Electroless plating and sputtering were employed for the metal nanocoating.

View Article and Find Full Text PDF

We propose a simple, precise, and wafer-scale fabrication technique for Au double nanopillar (DNP) arrays with nanogaps of several tens of nanometers. An Au DNP was simply constructed by alternately laminating thin layers of Au and polymer on a template and selectively removing the thin layers. This DNP array was expected to exhibit a specific plasmonic property induced by its narrow gap.

View Article and Find Full Text PDF

Tetrahedral amorphous carbon (ta-C) films with nanoscale structural anisotropy, which are obliquely deposited on a substrate by a filtered cathodic vacuum arc deposition (FAD) technique, allow anisotropic growth of mesostructured silica films thereon. The ta-C films have a uniformly tilted nanoscale columnar structure, which is caused by the self-shadowing effect during the oblique deposition, and consequently, the surface of the film can be morphologically anisotropic when the deposition angle is large enough. When silica films with a two-dimensional hexagonal mesostructure are grown under hydrothermal conditions on these ta-C films, the cylindrical mesochannels are aligned perpendicularly to the deposition direction of ta-C.

View Article and Find Full Text PDF

Multinuclear complexes consisting of metal ions and a bis(terpyridyl) ligand were covalently bound to carbon substrates. The bonding of the complexes is initiated by the bonding of phenylterpyridine (PT) on the substrates using its in-situ-generated diazonium derivative, followed by stepwise coordination of the metal ions and the ligand on it. The bonding of the PT and the formation of the multinuclear complexes were confirmed by XPS, AFM, and CV measurements.

View Article and Find Full Text PDF

A novel ionic liquid crystal (ILC) system (C(12)MImI/I(2)) with a smectic A phase used as an electrolyte for a dye-sensitized solar cell (DSSC) showed the higher short-circuit current density (J(SC)) and the higher light-to-electricity conversion efficiency than the system using the non-liquid crystalline ionic liquid (C(11)MImI/I(2)), due to the higher conductivity of ILC. To investigate charge transport properties of the electrolytes in detail, the exchange reaction-based diffusion coefficients (D(ex)) were evaluated. The larger D(ex) value of ILC supported that the higher conductivity of ILC is attributed to the enhancement of the exchange reaction between iodide species.

View Article and Find Full Text PDF

The mechanisms of photocatalytic remote oxidation have been elucidated. Hydrogen peroxide, generated on a photocatalyst (TiO2, Pt-TiO2, or Ag-TiO2), is transported in air and then photocleaved into hydroxyl radicals by UV light in the vicinity of a substrate, and the hydroxyl radicals attack the substrate.

View Article and Find Full Text PDF