We developed a workflow using multi-scale and multi-disciplinary experimental and computational approaches to analyze C-looping (the first phase of cardiac looping) of the chick across four developing hearts. We provide the first 3D datasets for the C-looping heart with cell to organism level information, including datasets of heart images and segmented myocardial cells within the heart. We used these datasets to investigate, as a proof-of-concept, the differential spatiotemporal patterns of growth at both the cellular and tissue levels, and demonstrate how geometrical changes of C-looping at the tissue level are linked to growth features at the cellular level.
View Article and Find Full Text PDFIn birds the auditory system plays a key role in providing the sensory input used to discriminate between conspecific and heterospecific vocal signals. In those species that are known to learn their vocalizations, for example, songbirds, it is generally considered that this ability arises and is manifest in the forebrain, although there is no a priori reason why brainstem components of the auditory system could not also play an important part. To test this assumption, we used groups of normal reared and cross-fostered zebra finches that had previously been shown in behavioural experiments to reduce their preference for conspecific songs subsequent to cross fostering experience with Bengalese finches, a related species with a distinctly different song.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
August 2015
The dorsal cochlear nucleus (DCN) is a major subdivision of the mammalian cochlear nucleus (CN) that is thought to be involved in sound localization in the vertical plane and in feature extraction of sound stimuli. The main principal cell type (pyramidal cells) integrates auditory and non-auditory inputs, which are considered to be important in performing sound localization tasks. This study aimed to investigate the histological development of the CD-1 mouse DCN, focussing on the postnatal period spanning the onset of hearing (P12).
View Article and Find Full Text PDFGlia have been implicated in a variety of functions in the central nervous system, including the control of the neuronal extracellular space, synaptic plasticity and transmission, development and adult neurogenesis. Perineuronal glia forming groups around neurons are associated with both normal and pathological nervous tissue. Recent studies have linked reduction in the number of perineuronal oligodendrocytes in the prefrontal cortex with human schizophrenia and other psychiatric disorders.
View Article and Find Full Text PDFBirds exhibit a huge array of behavior, ecology and physiology, and occupy nearly every environment on earth, ranging from the desert outback of Australia to the tropical rain forests of Panama. Some birds have adopted a fully nocturnal lifestyle, such as the barn owl and kiwi, while others, such as the albatross, spend nearly their entire life flying over the ocean. Each species has evolved unique adaptations over millions of years to function in their respective niche.
View Article and Find Full Text PDFThe sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi.
View Article and Find Full Text PDFKiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of best hearing in the North Island brown kiwi.
View Article and Find Full Text PDFThe midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches.
View Article and Find Full Text PDFSequential to companion articles that report the projections of the cochlear nucleus angularis (NA) and the third-order nucleus laminaris (NL) to the central nucleus of the inferior colliculus (MLd) and to the superior olive (OS) and lateral lemniscal nuclei (LLV, LLI, and LLD) (Krützfeldt et al., J Comp Neurol, this issue), we here describe the projections of the latter group of nuclei using standard tract-tracing methods. OS projects on LLV and both have further ascending projections on LLI, LLD, and MLd.
View Article and Find Full Text PDFThree nuclei of the lateral lemniscus are present in the zebra finch, ventral (LLV), intermediate (LLI), and dorsal (LLD). LLV is separate from the superior olive (OS): it lies closer to the spinal lemniscus and extends much further rostrally around the pontine periphery. LLI extends from a caudal position ventrolateral to the principal sensory trigeminal nucleus (LLIc) to a rostral position medial to the ventrolateral parabrachial nucleus (LLIr).
View Article and Find Full Text PDFAuditory information is important for social and reproductive behaviors in birds generally, but is crucial for oscine species (songbirds), in particular because in these species auditory feedback ensures the learning and accurate maintenance of song. While there is considerable information on the auditory projections through the forebrain of songbirds, there is no information available for projections through the brainstem. At the latter levels the prevalent model of auditory processing in birds derives from an auditory specialist, the barn owl, which uses time and intensity parameters to compute the location of sounds in space, but whether the auditory brainstem of songbirds is similarly functionally organized is unknown.
View Article and Find Full Text PDFThe presence and nature of a descending projection from the ventral nucleus of the lateral lemniscus (LLV) to the cochlear nuclei (NA, NM) and the third-order nucleus laminaris (NL) was investigated in a songbird using tract tracing and GAD immunohistochemistry. Tracer injections into LLV produced anterograde label in the ipsilateral NA, NM and NL, which was found not to be GABAergic. Double retrograde labeling from LLV and NA/NM/NL ruled out the possibility that the LLV projection actually arose from collaterals of superior olivary projections to NA/NM/NL.
View Article and Find Full Text PDFIn songbirds song production requires the intricate coordination of vocal and respiratory muscles under the executive influence of the telencephalon, as for speech in humans. In songbirds the site of this coordination is suspected to be the nucleus retroambigualis (RAm), because it contains premotor neurons projecting upon both vocal motoneurons and spinal motoneurons innervating expiratory muscles, and because it receives descending inputs from the telencephalic vocal control nucleus robustus archopallialis (RA). Here we used tract-tracing techniques to provide a more comprehensive account of the projections of RAm and to identify the different populations of RAm neurons.
View Article and Find Full Text PDFThe Wulst of birds, which is generally considered homologous with the isocortex of mammals, is an elevation on the dorsum of the telencephalon that is particularly prominent in predatory species, especially those with large, frontally placed eyes, such as owls. The Wulst, therefore, is largely visual, but a relatively small rostral portion is somatosensory in nature. In barn owls, this rostral somatosensory part of the Wulst forms a unique physical protuberance dedicated to the representation of the contralateral claw.
View Article and Find Full Text PDFMany of the 5,500 threatened species of vertebrates found worldwide are highly protected and generally unavailable for scientific investigation. Here we describe a noninvasive protocol to visualize the structure and size of brain in postmortem specimens. We demonstrate its utility by examining four endangered species of kiwi (Apteryx spp.
View Article and Find Full Text PDFBirdsong, like human speech, is a series of learned vocal gestures resulting from the coordination of vocal and respiratory brainstem networks under the control of the telencephalon. The song motor circuit includes premotor and motor cortical analogs, known as HVC (used as a proper name) and RA (the robust nucleus of the arcopallium), respectively. Previous studies showed that HVC projects to RA and that RA projection neurons (PNs) topographically innervate brainstem vocal-motor and respiratory networks.
View Article and Find Full Text PDFBrain size in vertebrates varies principally with body size. Although many studies have examined the variation of brain size in birds, there is little information on Palaeognaths, which include the ratite lineage of kiwi, emu, ostrich and extinct moa, as well as the tinamous. Therefore, we set out to determine to what extent the evolution of brain size in Palaeognaths parallels that of other birds, i.
View Article and Find Full Text PDFSex differences in behavioral repertoires are often reflected in the underlying electrophysiological and morphological properties of motor neurons. Male zebra finches produce long, spectrally complex, learned songs and short calls, whereas female finches only produce short, innate, and spectrally simple calls. In both sexes, vocalizations are produced by using syringeal muscles controlled by motoneurons within the tracheosyringeal part of the hypoglossal motor nucleus (XIIts).
View Article and Find Full Text PDFLearned vocalizations, such as bird song, require intricate coordination of vocal and respiratory muscles. Although the neural basis for this coordination remains poorly understood, it likely includes direct synaptic interactions between respiratory premotor neurons and vocal motor neurons. In birds, as in mammals, the medullary nucleus retroambigualis (RAm) receives synaptic input from higher level respiratory and vocal control centers and projects to a variety of targets.
View Article and Find Full Text PDFThe air sacs of birds are thin-walled chambers connected to the lung that act as bellows in the ventilatory mechanism. Physiological evidence exists to suggest that they may contain receptors that are innervated by the vagus nerve, but no morphological study has examined the vagal innervation of these putative structures. To do this, we injected the cervical vagus nerve with choleragenoid and examined the innervation of the air sacs using light and confocal microscopy.
View Article and Find Full Text PDFIncreases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists.
View Article and Find Full Text PDFBarn owls are capable of great accuracy in detecting the interaural time differences (ITDs) that underlie azimuthal sound localization. They compute ITDs in a circuit in nucleus laminaris (NL) that is reorganized with respect to birds like the chicken. The events that lead to the reorganization of the barn owl NL take place during embryonic development, shortly after the cochlear and laminaris nuclei have differentiated morphologically.
View Article and Find Full Text PDFBelgian Waterslager (BWS) canaries are characterized by a mean 30% loss of hair cells in the basilar papilla compared to other canaries, and a corresponding increase in behavioral auditory thresholds. In spite of the large number of missing and damaged sensory cells, there is on average only a 12% reduction in the number of fibers in the VIIIth nerve. In this study, we examined cell number and size, and volume of auditory nuclei, specifically in nucleus magnocellularis and nucleus laminaris in Belgian Waterslager canaries.
View Article and Find Full Text PDFBrain Behav Evol
January 2001
We have investigated the somatosensory and auditory representations in the nucleus basalis of the barn owl. In pigeons and finches, the nucleus basalis contains a representation of the beak and an auditory area. In the barn owl, the nucleus basalis also contains a complete somatotopic map of the head and body (as in the budgerigar), with a tonotopically organized auditory area in close proximity to the representation of the facial ruff and the preaural area.
View Article and Find Full Text PDFBirds have proved to be extremely useful models for the study of hearing function. In particular, chickens and barn owls have been widely used by a number of researchers to study diverse aspects of auditory function. These studies have benefited from the advantages offered by each of these two species, including differences of auditory specialization.
View Article and Find Full Text PDF