Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM.
View Article and Find Full Text PDFThree young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%.
View Article and Find Full Text PDFWe studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings.
View Article and Find Full Text PDFThe world's forests are currently exposed to increasing concentrations of carbon dioxide (CO2) and ozone (O3). Both pollutants can potentially exert a selective effect on plant populations. This, in turn, may lead to changes in ecosystem properties, such as carbon sequestration.
View Article and Find Full Text PDFThe accumulation of anthropogenic CO₂ in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO₂. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to factorial combinations of elevated CO₂ and O₃. Enhanced net primary productivity (NPP) (c.
View Article and Find Full Text PDFWe studied the effect of high ozone (O(3)) concentration (110-490 nmol mol(-1)) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O(3) pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O(3) exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O(3) and/or CO(2) for 12 years, were harvested. Acute O(3) damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves.
View Article and Find Full Text PDFRecent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se.
View Article and Find Full Text PDFPhotosynthetic acclimation under elevated carbon dioxide (CO(2)) and/or ozone (O(3)) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO(2) and/or O(3) will acclimate after 11 years of exposure at the Aspen Face site in Rhinelander, WI, USA. We studied diurnal patterns of instantaneous photosynthetic measurements as well as A/C(i) measurements monthly during the 2004-2008 growing seasons.
View Article and Find Full Text PDFThe effect of elevated CO(2) and O(3) on apparent quantum yield (varphi), maximum photosynthesis (P(max)), carboxylation efficiency (V(cmax)) and electron transport capacity (J(max)) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O(3) tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO(2) alone did not affect varphi or P(max), and increased J(max) in the O(3)-sensitive, but not in the O(3)-tolerant clone.
View Article and Find Full Text PDFThe forest hydrologic budget may be impacted by increasing CO(2) and tropospheric O(3). Efficient means to quantify such effects are beneficial. We hypothesized that changes in the balance of canopy interception, stem flow, and through-fall in the presence of elevated CO(2) and O(3) could be discerned using image analysis of leafless branches.
View Article and Find Full Text PDFBetula papyrifera trees were exposed to elevated concentrations of CO(2) (1.4 x ambient), O(3) (1.2 x ambient) or CO(2) + O(3) at the Aspen Free-air CO(2) Enrichment Experiment.
View Article and Find Full Text PDFElevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in the free air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). Measurements of sap flux and canopy leaf area index (L) were made during two growing seasons, when steady-state L had been reached after more than 6 years of exposure to elevated [CO2] and [O3].
View Article and Find Full Text PDFWe studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO(2) and/or O(3) on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO(2) increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O(3) also increased flowering but decreased seed weight and germination rate.
View Article and Find Full Text PDFWe investigated the interactive effects of elevated concentrations of carbon dioxide ([CO(2)]) and ozone ([O(3)]) on radial growth, wood chemistry and structure of five 5-year-old trembling aspen (Populus tremuloides Michx.) clones and the wood chemistry of paper birch (Betula papyrifera Marsh.).
View Article and Find Full Text PDFPaper birch (Betula papyrifera Marsh.) and three trembling aspen clones (Populus tremuloides Michx.) were studied to determine if alterations in carbon gain in response to an elevated concentration of CO(2) ([CO(2)]) or O(3) ([O(3)]) or a combination of both affected bud size and carbohydrate composition in autumn, and early leaf development in the following spring.
View Article and Find Full Text PDFForest ecosystems are important sinks for rising concentrations of atmospheric CO(2). In previous research, we showed that net primary production (NPP) increased by 23 +/- 2% when four experimental forests were grown under atmospheric concentrations of CO(2) predicted for the latter half of this century. Because nitrogen (N) availability commonly limits forest productivity, some combination of increased N uptake from the soil and more efficient use of the N already assimilated by trees is necessary to sustain the high rates of forest NPP under free-air CO(2) enrichment (FACE).
View Article and Find Full Text PDFAtmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO2 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI.
View Article and Find Full Text PDFThree model communities of trembling aspen (monoculture, and mixed with either paper birch or sugar maple) were grown for seven years in elevated atmospheric CO(2) and O(3) using Free Air CO(2) Enrichment (FACE) technology. We utilized trends in species' importance, calculated as an index of volume growth and survival, as indications of shifting community composition. For the pure aspen communities, different clones emerged as having the highest change in relative importance values depending on the pollutant exposure.
View Article and Find Full Text PDFThe aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2005
Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO(2)] ("CO(2) fertilization"), thereby slowing the rate of increase in atmospheric [CO(2)]. Carbon exchanges between the terrestrial biosphere and atmosphere are often first represented in models as net primary productivity (NPP).
View Article and Find Full Text PDFConcentrations of atmospheric CO(2) and tropospheric ozone (O(3)) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO(2) enrichment (FACE) technology, we exposed north-temperate forest communities to concentrations of CO(2) and O(3) predicted for the year 2050 for the first 7 yr of stand development. Site-specific allometric equations were applied to annual nondestructive growth measurements to estimate above- and below-ground biomass and NPP for each year of the experiment.
View Article and Find Full Text PDFStimulation of early flowering is required to shorten breeding cycles of eastern cottonwood (Populus deltoides Bartr. ex Marsh. var.
View Article and Find Full Text PDFTemporal and spatial formation and differentiation of axillary buds in developing shoots of mature eastern cottonwood (Populus deltoides) were investigated. Shoots sequentially initiate early vegetative, floral, and late vegetative buds. Associated with these buds is the formation of three distinct leaf types.
View Article and Find Full Text PDFHuman activity causes increasing background concentrations of the greenhouse gases CO2 and O3. Increased levels of CO2 can be found in all terrestrial ecosystems. Damaging O3 concentrations currently occur over 29% of the world's temperate and subpolar forests but are predicted to affect fully 60% by 2100 (ref.
View Article and Find Full Text PDFWe exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years.
View Article and Find Full Text PDF