Publications by authors named "Kubasek J"

Due to limited slip systems activated at room temperature, the plastic deformation of Mg and its alloys without any preheating of initial billets is significantly limited. To overcome those issues, new methods of severe plastic deformation are discovered and developed. One such example is extrusion with an oscillating die, called KoBo.

View Article and Find Full Text PDF

Background And Aims: The benefits and costs of amphistomy (AS) vs. hypostomy (HS) are not fully understood. Here, we quantify benefits of access of CO2 through stomata on the upper (adaxial) leaf surface, using 13C abundance in the adaxial and abaxial epicuticular wax.

View Article and Find Full Text PDF

Mesophyll resistance for CO diffusion (r) is one of the main limitations for photosynthesis and plant growth. Breeding new varieties with lower r requires knowledge of its distinct components. We tested new method for estimating the relative drawdowns of CO concentration (c) across hypostomatous leaves of Fagus sylvatica.

View Article and Find Full Text PDF

In the body of multicellular organisms, macrophages play an indispensable role in maintaining tissue homeostasis by removing old, apoptotic and damaged cells. In addition, macrophages allow significant remodeling of body plans during embryonic morphogenesis, regeneration and metamorphosis. Although the huge amount of organic matter that must be removed during these processes represents a potential source of nutrients, their further use by the organism has not yet been addressed.

View Article and Find Full Text PDF

testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418).

View Article and Find Full Text PDF

Deformed wing virus (DWV) transmitted by the parasitic mite Varroa destructor is one of the most significant factors contributing to massive losses of managed colonies of western honey bee (Apis mellifera) subspecies of European origin reported worldwide in recent decades. Despite this fact, no antiviral treatment against honey bee viruses is currently available for practical applications and the level of viral infection can only be controlled indirectly by reducing the number of Varroa mites in honey bee colonies. In this study, we investigated the antiviral potential of the gypsy mushroom (Cortinarius caperatus) to reduce DWV infection in honey bees.

View Article and Find Full Text PDF

The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α.

View Article and Find Full Text PDF

In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy.

View Article and Find Full Text PDF

Alcobiosis, the symbiosis of algae and corticioid fungi, frequently occurs on bark and wood. Algae form a layer in or below fungal basidiomata reminiscent of the photobiont layer in lichens. Identities of algal and fungal partners were confirmed by DNA barcoding.

View Article and Find Full Text PDF

Two novel ignition-resistant magnesium alloys, Mg-2Gd-2Y-1Ca and Mg-2Nd-1Y-1Ca, were prepared in the ultrafine-grain condition by equal channel angular pressing (ECAP). In addition, four commercial alloys-AZ31, AX41, AE42 and WE43-were prepared similarly as a reference. The microstructure, mechanical properties and ignition temperature were thoroughly investigated.

View Article and Find Full Text PDF

The plant cuticle is an important plant-atmosphere boundary, the synthesis and maintenance of which represents a significant metabolic cost. Only limited information regarding cuticle dynamics is available. We determined the composition and dynamics of Clusia rosea cuticular waxes and matrix using CO labelling, compound-specific and bulk isotope ratio mass spectrometry.

View Article and Find Full Text PDF

Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size.

View Article and Find Full Text PDF

Some bee species use wax to build their nests. They store honey and raise their brood in cells made entirely from wax. How can the bee brood breathe and develop properly when sealed in wax cells? We compared the chemical composition and structural properties of the honey cappings and worker brood cappings of the honeybee , measured the worker brood respiration, and calculated the CO gradients across the two types of cappings.

View Article and Find Full Text PDF

In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy.

View Article and Find Full Text PDF

Stainless steels are materials that could be used for constructing not only the bearing parts of fuel cells but also the functional ones, particularly the bipolar plates. The advantage of stainless steel is its valuable electrical and thermal conductivity, reasonably low cost, excellent mechanical properties, and good formability. Paradoxically, the self-protection effect resulting from passivation turns into the main disadvantage, which is unacceptable interfacial contact resistance.

View Article and Find Full Text PDF

Aluminothermic reduction without the separation of individual metals is currently considered as a possible method for processing ferromanganese sea nodules and creating new alloys. In this study, the product of their reduction-a manganese-based polymetallic mixture-was added to pure aluminum, as a mixture of alloying elements in their natural ratios. After extrusion, two new aluminum alloys with a total percentage of metallic additives ranging from 1 to 6 percent were prepared.

View Article and Find Full Text PDF

Zinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by alloying or thermomechanical processes. This paper presents the effects of different mechanical alloying (MA) parameters on the composition of Zn-1Mg powder.

View Article and Find Full Text PDF

As the commercially most-used Ti-6Al-4V alloy has a different modulus of elasticity compared to the modulus of elasticity of bone and contains allergenic elements, β-Ti alloy could be a suitable substitution in orthopedics. The spark plasma sintering (SPS) method is feasible for the preparation of materials, with very low porosity and fine-grained structure, leading to higher mechanical properties. In this study, we prepared quaternary Ti-25Nb-4Ta-8Sn alloy using the spark plasma sintering method.

View Article and Find Full Text PDF

The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed.

View Article and Find Full Text PDF

In this pilot study, we investigated the biocompatibility and degradation rate of an extruded Zn-0.8Mg-0.2Sr (wt.

View Article and Find Full Text PDF

Efficient photosynthesis requires a balance of ATP and NADPH production/consumption in chloroplasts, and the exportation of reducing equivalents from chloroplasts is important for balancing stromal ATP/NADPH ratio. Here, we showed that the overexpression of purple acid phosphatase 2 on the outer membranes of chloroplasts and mitochondria can streamline the production and consumption of reducing equivalents in these two organelles, respectively. A higher capacity of consumption of reducing equivalents in mitochondria can indirectly help chloroplasts to balance the ATP/NADPH ratio in stroma and recycle NADP, the electron acceptors of the linear electron flow (LEF).

View Article and Find Full Text PDF

In vitro cytotoxicity testing is an indispensable part of the development of new biomaterials. However, the standard ISO 10993-5 enables variability in the testing conditions, which makes the results of the test incomparable. We studied the influence of media composition on the results of the cytotoxicity test.

View Article and Find Full Text PDF

Zinc (Zn) alloys seem to be promising candidates for application in orthopaedic or cardiovascular medical implants. In this area, high standards are required regarding the biocompatibility as well as excellent mechanical and tailored degradation properties. In the presented study, a novel Zn-0.

View Article and Find Full Text PDF