J Trauma Acute Care Surg
September 2024
Background: Variations in the anatomy of the anterior rib cage and costal margin have been observed. We sought to evaluate the location of interchondral joints and evaluate their effect on mobility of the rib cage.
Methods: Cadaveric dissections were performed to evaluate the anatomy of the anterior ribs and the composition of the costal margin.
J Trauma Acute Care Surg
December 2023
Objective: Knee arthrocentesis can be performed by landmark (LM) or ultrasound (US) guidance. The goal of performing knee arthrocentesis is to obtain synovial fluid, however, it is also important to consider the number of attempts required and accidental bone contacts that occur. This study evaluates procedural success without bone contact in knee arthrocentesis and compares both LM and US guided techniques in a cadaver model.
View Article and Find Full Text PDFBackground: Heart valve replacement in neonates and infants is one of the remaining unsolved problems in cardiac surgery because conventional valve prostheses do not grow with the children. Similarly, heart valve replacement in children and young adults with contraindications to anticoagulation remains an unsolved problem because mechanical valves are thrombogenic and bioprosthetic valves are prone to early degeneration. Therefore, there is an urgent clinical need for growing heart valve replacements that are durable without the need for anticoagulation.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2016
Left-right (L-R) differences in mammographic parenchymal patterns are an early predictor of breast cancer risk; however, the basis for this asymmetry is unknown. Here, we use retinoid X receptor alpha heterozygous null (RXRα) mice to propose a developmental origin: perturbation of coordinated anterior-posterior (A-P) and L-R axial body patterning. We hypothesized that by analogy to somitogenesis-in which retinoic acid (RA) attenuation causes anterior somite pairs to develop L-R asynchronously-that RA pathway perturbation would likewise result in asymmetric mammary development.
View Article and Find Full Text PDFThe identification of Smads as protein transcription factors in 1995 led to elucidation of the canonical transforming growth factor-beta (TGF-beta) signaling pathway. In the years that have followed, nuances of the pathway have been realized, and the once-simple scheme of ligand to receptor to activated transcription factor is now understood to be highly regulated at each step and riddled with crosstalk from other pathways. The Smads are also recognized as important players outside of canonical TGF-beta-dependent signaling and are responsible for regulating diverse cellular processes.
View Article and Find Full Text PDFIndirect regulation of transforming growth factor (TGF)-beta signaling by retinoids occurs on a long-term timescale, secondary to transcriptional events. Studies by our group show loss of retinoid X receptor (RXR) alpha results in increased TGFbeta2 in the midgestational heart, which may play a role in the cardiac defects seen in this model [S.W.
View Article and Find Full Text PDFScientificWorldJournal
February 2008
The importance of retinoid signaling during cardiac development has long been appreciated, but recently has become a rapidly expanding field of research. Experiments performed over 50 years ago showed that too much or too little maternal intake of vitamin A proved detrimental for embryos, resulting in a cadre of predictable cardiac developmental defects. Germline and conditional knockout mice have revealed which molecular players in the vitamin A signaling cascade are potentially responsible for regulating specific developmental events, and many of these molecules have been temporally and spatially characterized.
View Article and Find Full Text PDFThe right ventricle and outflow tract of the developing heart are derived from mesodermal progenitor cells from the second heart field (SHF). SHF cells have been characterized by expression of the transcription factor Islet-1 (Isl1). Although Isl1 expression has also been reported in the venous pole, the specific contribution of the SHF to this part of the heart is unknown.
View Article and Find Full Text PDFThe Na+/Ca2+ exchanger (NCX1) is crucial in the regulation of [Ca2+]i in the cardiac myocyte. The exchanger is upregulated in cardiac hypertrophy, ischemia, and failure. This upregulation can have an effect on Ca2+ transients and possibly contribute to diastolic dysfunction and an increased risk of arrhythmias.
View Article and Find Full Text PDFThe Na+-Ca2+ exchanger (NCX1) is up-regulated in hypertrophy and is often found up-regulated in end-stage heart failure. Studies have shown that the change in its expression contributes to contractile dysfunction. We have previously shown that the 1831-bp Ncx1 H1 (1831Ncx1) promoter directs cardiac-specific expression of the exchanger in both development and in the adult, and is sufficient for the up-regulation of Ncx1 in response to pressure overload.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2005
Vitamin A signals play critical roles during embryonic development. In particular, heart morphogenesis depends on vitamin A signals mediated by the retinoid X receptor alpha (RXRalpha), as the systemic mutation of this receptor results in thinning of the myocardium and embryonic lethality. However, the molecular and cellular mechanisms controlled by RXRalpha signaling in this process are unclear, because a myocardium-restricted RXRalpha mutation does not perturb heart morphogenesis.
View Article and Find Full Text PDFObjective: Knockout of the neural and cardiac expressed transcription factor HF-1b causes electrophysiological abnormalities including fatal ventricular arrhythmias that occur with increasing frequency around the 4th week of postnatal life. This study addresses factors that may contribute to conduction disturbance in the ventricle of the HF-1b knockout mouse. Disruptions to gap junctional connexin40 (Cx40) have been reported in distal (i.
View Article and Find Full Text PDFThe epicardium of the heart originates from a cluster of mesothelial-derived cells that develop beneath the sinus venosus in the embryonic day (E) 9.0-9.5 mouse.
View Article and Find Full Text PDFAnat Rec A Discov Mol Cell Evol Biol
January 2004
A major goal in cardiovascular biology is to repair diseased or damaged hearts with newly generated myocardial tissue. Stem cells offer a potential source of replacement myocytes for restoring cardiac function. Yet little is known about the nature of the cells that are able to generate myocardium and the conditions they require to form heart tissue.
View Article and Find Full Text PDFPatterns of DNA synthesis in the developing mouse heart between ED7.5-18.5 were studied by a combination of thymidine and bromodeoxyuridine labeling techniques.
View Article and Find Full Text PDFSeptation of the single tubular embryonic outflow tract into two outlet segments in the heart requires the precise integration of proliferation, differentiation and apoptosis during remodeling. Lack of proper coordination between these processes would result in a variety of congenital cardiac defects such as those seen in the retinoid X receptor alpha knockout (Rxra(-/-)) mouse. Rxra(-/-) embryos exhibit lethality between embryonic day (E) 13.
View Article and Find Full Text PDFAlthough cytoskeletal mutations are known causes of genetically based forms of dilated cardiomyopathy, the pathways that link these defects with cardiomyopathy are unclear. Here we report that the alpha-actinin-associated LIM protein (ALP; Alp in mice) has an essential role in the embryonic development of the right ventricular (RV) chamber during its exposure to high biomechanical workloads in utero. Disruption of the gene encoding Alp (Alp) is associated with RV chamber dilation and dysfunction, directly implicating alpha-actinin-associated proteins in the onset of cardiomyopathy.
View Article and Find Full Text PDFRecently the near complete cDNA of the regulatory atrial myosin light chain (MLC-2a) was cloned. The atrial specific isoform has been shown to be a useful molecular marker for cardiac chamber specification. Therefore, the regulatory sequence of the gene will provide clues on cardiomyocyte differentiation and atrial specific transcription regulation.
View Article and Find Full Text PDFHF-1 b, an SP1 -related transcription factor, is preferentially expressed in the cardiac conduction system and ventricular myocytes in the heart. Mice deficient for HF-1 b survive to term and exhibit normal cardiac structure and function but display sudden cardiac death and a complete penetrance of conduction system defects, including spontaneous ventricular tachycardia and a high incidence of AV block. Continuous electrocardiographic recordings clearly documented cardiac arrhythmogenesis as the cause of death.
View Article and Find Full Text PDFWe identified hyaluronan synthase-2 (Has2) as a likely source of hyaluronan (HA) during embryonic development, and we used gene targeting to study its function in vivo. Has2(-/-) embryos lack HA, exhibit severe cardiac and vascular abnormalities, and die during midgestation (E9.5-10).
View Article and Find Full Text PDFEmbryonic stem cells will cluster and differentiate into embryoid bodies, which can develop spontaneous rhythmic contractions. From these embryoid bodies, cardiomyocytes can be isolated based on density by a discontinuous Percoll gradient. These cardiomyocytes differentiate into ventricular myocytes, which is demonstrated by the expression of the ventricular specific isoform of the myosin light chain 2 gene.
View Article and Find Full Text PDFCardiac chamber morphogenesis requires the coordinated growth of both cardiac muscle and endocardial cell lineages. Paracrine growth factors may modulate the coordinated cellular specification and differentiation during cardiac chamber morphogenesis, as suggested by the essential role of endothelial-derived growth factors, neuregulin-1, and insulin-like growth factor-I. Using the whole mouse embryo culture system for delivery of diffusible factors into the cardiac chamber, neuregulin-1 was shown to promote trabeculation of the ventricular wall.
View Article and Find Full Text PDF